KONG -Y
NameDescriptionContent
Location:

FCN/FCJ Autonomous Controller Functions (FCN-100/FCJ) Yokogawa

From: | Author:kongjiang | Time :2025-03-07 | 416 Browse: | Share:

FCN/FCJ Autonomous Controller Functions (FCN-100/FCJ) Yokogawa

 GENERAL

This document describes the system configurations, development/maintenance, software configurations, network and specifications, for two types of autonomous controllers in the STARDOM: FCN with NFCP100 CPU module and FCJ.  (FCN is an acronym for field control node, and FCJ for field control junction.) Notation in this document: 

 • The term “FCN” refers to the module consisting type autonomous controllers.

 • The term “FCN-500” refers to the autonomous controllers with NFCP501/NFCP502 CPU module. 

 • The term “FCN-100” refers to the autonomous controllers with NFCP100 CPU module.

 • The term “FCN-RTU” refers to the low power autonomous controllers with NFCP050 CPU module.

 • The term “FCJ” refers to the all-in-one type autonomous controllers.

l FCN-100

l FCJ

FCJ is an all-in-one controller with a built-in I/O interface — ideal for installing inside machine equipment as well as configuring a distributed system. Its control network can be duplexed. For hardware details, refer to FCJ Autonomous Controller Hardware, GS 34P02Q11-01E

 FEATURES

l High Performance

• Applicable to a variety of processes, from sequence control processes to analog control processes. 

• Intercommunication with other autonomous controllers or other equipment for inter-linked control actions, in addition to stand-alone operation. 

• Using Versatile Data Server Software (VDS) or Supervisory Systems (FAST/TOOLS) together allows a system with enriched operation and monitoring functions to be built up. • An FCN/FCJ OPC server for Windows can be used for accessing the data of an FCN/FCJ from an OPC (OLE for Process Control) client on a PC. 

• Java-enabled — enables users to implement various applications, including displaying images on a Web browser, saving data files, transferring files using the FTP protocol, sending/receiving e-mails and public network connection using the PPP protocol. With InfoWell, applications such as web browsers and e-mail communications can be utilized without programming.

l High Reliability

• RAS features (CPU self-diagnostics, temperature monitoring, I/O diagnostics, and more) 

• Memory with error-correcting code (ECC) 

• Low heat dissipation, eliminating the need for a cooling fan 

• The Ethernet control network, CPU, power supply module, and SB bus (FCN local bus) can all be duplexed for an FCN-100. 

• The control network can be duplexed for an FCJ.

l Engineering Efficiency

• Five IEC 61131-3 compliant programming languages are supported, enabling the user to selectively use these languages according to their purposes of use and applications. 

• Control logic can be encapsulated into software parts for reuse, allowing efficient and quality system configuration.

• Application Portfolios packed with Yokogawa’s application expertise, enable easy implementation of advanced functions, including control-loop instrument blocks and communication with non-Yokogawa PLCs.

l Easy Maintenance

• Online download function allows a control application to be modified during system operation 

• All modules are hot-swappable with an FCN-100.

 CONFIGURATIONS

l System Configurations Both FCN and FCJ are locally mounted controllers to allow diverse systems to be configured according to the individual users’ work sites; however, the possible system configurations can be broadly divided into three types:

 • A system consisting of a standalone FCN or FCJ 

 • A system in which FCNs and/or FCJs are connected to each other through the control network and perform interlinked actions (up to a total of 15 FCNs and FCJs can intercommunicate with one FCN/FCJ).

 • A system in which one or more FCNs and/or FCJs are interlinked with VDS, FCN/FCJ OPC Server or FAST/TOOLS (up to a total of 4 VDSs, FCN/FCJ OPC Servers and FAST/TOOLS can be connected).

l Development and Maintenance of FCN/FCJ

A PC/AT-compatible computer is used for development and maintenance of applications for an FCN and FCJ. Resource Configurator is a tool program to be installed in the computer used for maintenance, and is used to make the FCN/FCJ hardware settings. The user can access FCN and FCJs via a Web browser from a PC to make detailed settings for the network and so on, and to perform maintenance operations such as database backup and restoration. Logic Designer is a tool program for the development of control applications for an FCN/FCJ. Logic Designer requires a license to run. These tool programs are supplied on a DVD-ROM.

 SPECIFICATIONS

l CPU Function Specifications Execution Speed: Approx. 50 µs per kilosteps in an IL program Number of Control Applications: Max. 16 tasks Task Priority: Can be specified (in 16 levels) Task Execution Cycle: 10 ms or longer (by 10 msec. increments) l CPU Memory Capacity Control Application Capacity: Max. 3 MB (approx. 400 kilosteps in an IL program) Data Area (1): Max. 8 MB Retained Data Area (2): Max. 410 KB (3) Java Application Capacity: Max. 32 MB 1: 2: 3: The data is not retained when the power is off. The data is retained even if the power is off. The data is retained during a power failure (can be used to store tuning parameter settings for the control application). Retained Data Area for control application is Max 350 KByte.

l Network (Ethernet) Specifications

Application Ethernet is used as the control network, which can be dual redundant, connecting FCNs/FCJs with various PLCs, display units and VDS. FCNs/FCJs are developed and maintained via Ethernet as well.

l Network (Serial) Specifications Serial ports can be used to link diverse devices and controllers.

Communication portfolios facilitating interconnection with display units, various programmable logic controllers, temperature controllers, and power monitors are available via a serial port.

l Guideline of Control Application Capacity

a total of the following. (1) Function blocks (POUs) Up to 512 

 • Regulator control blocks (e.g., indicator blocks, controller blocks, and manual loaders): Up to 128

 • Others (e.g., calculation blocks, switch instrument blocks, and communication POUs): Up to 384 (2) Sequence program Up to 180 kilosteps in Ladder or up to 128 sequence tables each of which has 32 condition and 32 action rows. Example of a control application with the maximum size:

 • Inputs/outputs: 96 AIs, 32 AOs, 256 DIs, and 256 DOs 

 • PID loops: 32 

 • Sequence program: 128 sequence tables 

 • Control cycle: 1 second

l Specification of FCN-100 with Duplexed CPU Modules 

 • After a failure of the CPU in service, the stand-by CPU obtains the control right instantaneously and resumes control without any influence of the CPU switchover. • When additionally installing a CPU module to an FCN with a single CPU module to configure duplexed CPU modules, such as when replacing a failed CPU module, carry out the All-program-copy (APC) command for equalization between the CPU modules. It is also possible to run the APC command automatically after CPU replacement. When the APC command is running, the control period lengthens by a second or two only during its first cycle. (1) 

 • Synchronization is periodically performed between the in-service CPU and stand-by CPU. The total processing time is hence longer than that of an FCN 100 with single CPU. • If the control application comprises multiple tasks, those tasks cannot access the same global variable.

 • The CPU module’s serial port cannot be used. 

 • Java applications cannot be run. 1: If one of the two CPUs in dual-redundant configuration is not style-3 NFCP100 CPUs, the APC command cannot be started automatically. In this case, control stops when the APC command is running and the I/O modules operate in the same way as they do when the Fallback option (can be set to ‘hold the output’ or ‘output specified values,’ for example) is selected. l Online Download Function 

 • Online download function is a feature with which control applications can be modified while a control function continues in operation. • With this feature, I/Os, variables, data types, program codes, and libraries can be added, deleted or modified.

 • Modifying the control loop during system operation does not affect other control loops. Changing a range of control loop or loop connection causes the control loop to become the MAN mode. l Implementation of Java Virtual Machine 

 • WWW server functionality: download HTML files and Java applets to Web browsers and access data in FCN-100s and FCJs 

 • E-mail transmission/reception: send and receive e-mail using SMTP and POP3 protocols, respectively support the authentication function of SMTP servers (SMTP Authentication/Pop Before SMTP) 

 • FTP client/server functionality: transfer files to/from other networking systems 

 • PPP (Point to Point Protocol) functionality: exchange data with a PC or a cellular phone via the public network such as GPRS by connecting a modem to a serial port of FCN/FCJ support the client mode and the server mode unsupport FCN-100’s serial port on one of duplexed CPU modules.

l Time Synchronization Function FCNs/FCJs enable time synchronization among equipment supporting SNTP (Simple Network Time Protocol). An FCN/FCJ can operate as an SNTP server or as an SNTP client.

l Connection to Display Unit FCNs and FCJs can connect a display unit using FA M3 Emulation Function or Modbus Communication Portfolio.

 SOFTWARE FCN-100 and FCJ can simultaneously run IEC 61131-3-compliant control applications and Java applications. Ethernet driver Real-time OS Control execution engine Control applications Java Virtual Machine Java applications I/O driver FCN/FCJ I/O modules Figure Conceptual Diagram of FCN/FCJ Software Configuration l Licenses The following licenses are required to run an FCN-100 and FCJ. FCN/FCJ Basic Software License Available in two editions: License for single-CPU FCN-100 and FCJ, and license for duplexed-CPU FCN-100. To use the FCN/FCJ Java functions, enable Java in the FCN/FCJ application software. (See 1 below) 1: For dual-redundant CPUs, FCN/FCJ Java functions cannot be used. FCN/FCJ Application Portfolio License To use application portfolios for FCNs/FCJs, respective portfolio licenses are required. For details, see Application Portfolios for FCN/FCJ, GS 34P02P20-01E. l Logic Designer Logic Designer is a tool program that runs on a computer and is used for developing control applications as tasks for an FCN/FCJ. For details, see Logic Designer, GS 34P02Q01-01E. l FCN/FCJ Simulator The simulator is designed to run control applications, which are created using the Logic Designer, on a general-purpose PC. This simulator enables users to debug control applications without using an FCN/FCJ. For details, see Logic Designer, GS 34P02Q75-01E. l Resource Configurator Resource Configurator is a tool program that runs on a computer and is used for making basic settings in an FCN/FCJ, including:

 • IP address settings 

 • I/O module settings 

 • License settings 

 • Initial communication settings Note: Resource Configurator is included in the supplied media (DVD-ROM) containing the FCN/FCJ software, and does not require a license to run. l Application Portfolios An Application Portfolio is a bundle of useful software parts for FCN/FCJ, such as those for advanced control. Application Portfolios are offered as: For control logic: PAS Portfolio SAMA Portfolio For communication: FA-M3 Communication Portfolio MELSEC Communication Portfolio SYSMAC Communication Portfolio Modbus Communication Portfolio DNP3 Communication Portfolio Temperature Controller Communication Portfolio and many more multifunctional portfolios. For details, see Application Portfolios, GS 34P02P20-01E. l FCN/FCJ Java Application Development Kit The FCN/FCJ Java Application Development Kit is software for developing Java software applications which run on the FCN-100 or FCJ. For more details, refer to FCN/FCJ Java Application Development Kit, GS 34P02Q76-01E. l InfoWell InfoWell is designed to transfer control application data from FCN/FCJ via web screens or e-mail. This package does not require programming and enables data transfer via web screens or e-mail by simple settings. For details, see InfoWell, GS 34P02P51-01E. l FCN/FCJ IT Security Tool This IT Security Tool sets IT security compliant with other Yokogawa system products security policy. FCN/FCJ engineering tools support IT security. Note: The IT Security is not available either for Domain Management or for Combination Management in CENTUM VP. l Counter Measure against Wide Area Network connection It is necessary to install VPN and/or firewall as a counter measure against network risk from Wide Area Network connection. For details, refer to STARDOM Network Configuration Guide, TI 34P02K25-01E.

 STYLES OF SOFTWARE SUPPLY l FCN/FCJ Basic Software License

 • The Logic Designer License comes with an order ID sheet with the order ID number and password. Access the specified Web site of Yokogawa and enter the order ID number and password shown. Then, a file containing the respective license IDs for the supplied software titles will be given. 

 • FCN/FCJ system card(s): Each basic software license comes with a system card for a single-CPU FCN-100 and FCJ, or two for a duplexed-CPU FCN 100. Install this card in an FCJ or in each CPU card for an FCN-100 for use.


  • ALSTOM COP232.2 VME A32/D32, 029.232 446 controller unit
  • ICS TRIPLEX T8111C​ Trusted TMR Processor
  • VMIC VMIVME-7740 VME Single Board Compute 750
  • foxboro FBM232 Field Device System Integrator Module P0926GW
  • GE 04220HL21204A IPC Control Module
  • ABB 3BSE000860R1 SB510 Backup Power
  • ABB 0504994880 Controller unit
  • ABB PFSA140 3BSE006503R1 Industrial robot Supply Unit
  • ABB 5SHX1445H0002 3BHL000387P0101 POWER IGCT unit
  • ABB 128877-103 CABLE, SP1200 IR DET.
  • ABB CI853K01 and TP853 RS-232C Interface
  • ABB REM610 MOTOR PROTECTION RELAY REM610C11HCNR
  • ABB IGBT 5SDF0860H0003 5SDF1045H0002 unit
  • ABB TC512V1 3BSE018059R1 RS485 Twisted pair Modem
  • ABB DO880 S800HI 3BSE028602R1 Digital Output
  • ABB GDD360C 3BHE047217R0101 Advanced Automation Solution
  • ABB UCD240A101 3BHE022287R0101 controller unit
  • ABB AC800F Ethernet Module AM811F 3BDH000050R1​
  • ABB AC800F Module AM801F 3BDH000040R1
  • ABB SD802F 3BDH000012R1 POWER UNIT
  • ABB operation panel PM820-2 3BSE010798R1 system module
  • ABB operation panel PM820-1 3BSE010797R1 system module
  • ABB CI857K01 3BSE018144R1 INSUM Ethernet Interface
  • ABB PM861/PM861AK01 and TP830 Processor Unit
  • ABB SA811F 3BDH000013R1 Power Supply 115/230 VAC
  • ABB 751010R0815 1VC1T0374A00R unit
  • 5SGY35L4510 Robot high voltage board Brand ABB
  • ABB HVC-02B 3HNA024966-00103 Robot high voltage board Brand HVC02B
  • ABB SLMG99 UNIT
  • ABB 086406-002 PWA.SIOC. SMART I/O CALIP 086407-502
  • ABB UCD208A101 3BHE020018R0101 UNIT
  • ABB UAD154A 3BHE026866R0101 UNIT
  • ABB GCD207B101 3BHE024642R0101 controller card
  • ABB TB820V2 S800 Modulebus module 3BSE013208R1
  • ABB UDD406A 3BHE041465P201 Control unit
  • ABB PPD113B01-10-150000 3BHE023784R1023 unit CPU module
  • ABB 5SHY35L4512 3BHE014105R0001 5SXE08-0166 IGCT unit
  • ABB Backplane Uni Type3+housing FETD685A1156U01
  • ABB 07DC91C GJR5251400R0202 Digital input and output Unit
  • ABB UNS2881b-P,V1 3BHE009319R0001 UNS2881BPV1 Inspirational system
  • ABB UNS2880B-P,V2 3BHE014967R0002 UNS2880B-PV1 Inspirational system
  • ABB CI810B 3BSE020520R1 AF 100 Fieldbus Comm. Interface
  • ABB FM9925a-E HIEE451116R0001 Interface Module Card
  • Bently 2300/25 0002 Vibration Monitors
  • Bently 2300/20 0002 Vibration Monitors
  • ALSTOM VP327 020-23EU 75X-6025-29 Control mainboard VP32702
  • ABB NE802 3BSE080237R1 Industrial switch
  • ABB 3BSE080207R1 NE810 Industrial switch
  • MOTOROLA MVME2400 VME Processor Modules
  • ABB 3BHE021481R0001 intelligent current distr UNIT
  • MOTOROLA MVME2434 VME Processor Modules
  • METSO PDP606 CONTROLLER unit
  • WOODWARD PG-PL-29 Governor 8577-613
  • GE IS230TNRLH1B Combination module kit Mark VI
  • GE IS230TNAIH2C Combination module kit Mark VI
  • ABB 3ASC25H204 DAPU 100 Control board I/O
  • ABB 3BHE014070R0101 V PPC905AE101 CCB-2 COMPLETE
  • ABB PRC3BSE050198R1 PM866K01 Processor Unit
  • Kongsberg RAIV400 600370 Remote Analogue Input
  • ABB SPSED01 event sequence module
  • ABB HIEE300900R0001 PP C322 BE01 PSR-2 processor + fieldbus
  • ABB 3BHE003604R0102 UFC765AE102 circuit board
  • ABB ACU-01B 3HNA024871-001 Robot controller
  • ABB XVC770BE101 3BHE021083R0101 circuit board
  • ABB UAC383AE01 HIEE300890R0001 Module
  • ABB REF610C11LCNP FEEDER PROTECTION RELAY
  • ABB MT91 Operator Panel MT-91-ARC FP A
  • ABB XUD194 XUD194A 3BHC018137R0001 module base
  • ABB 5SHY4045L0001 3BHB018162 3BHE009681R0101 GVC750BE101
  • ABB G2000A5.7ST graphical operation panel (HMI)
  • ABB 3BHE017628R0002 PPD115A02 SG579989013
  • ABB Motor Protection and Control REM615 Product Guide
  • ABB PFTL101B 3BSE004185R1 2.0KN sensor
  • ABB PFCL201CE 50KN 3BSX802939-108 sensor
  • ABB 3BHE023784R2530 PPD113B01-25-111000 AC 800PEC
  • ABB 3BHE046836R0101 GF D563 A101 LCI Conv. Interface (LIN)
  • ABB PPD512A10-454000 3BHE040375R103E PPD512 丨AC800PEC
  • ABB PPD117A3011 3BHE030410R3011 excitation controller
  • ABB AC800M PM891 3BSE053240R1 Processor module
  • ABB PP882 3BSE069275R1 HMI operating touch screen
  • ABB HIEE205014R0001 UNC 4673A,V1 Analog Measuring Card
  • ABB 128057-204 ASPC ASSY, W/-004
  • ABB 3BHB006716R0277 SYN 5302a-Z,V277: Auto dual channel Syn
  • ABB PFSK 163 V3 3BSE016323R3 Module
  • ABB 3BUS208796-001 HKQCS PARTS ON LINE
  • ABB 2VAA008425R1 RMU610 Base for redundant cRBX01
  • ABB 3BSE018876R1 PFSK 151 DSP-Signal processing
  • Westinghouse 1C31129G03 1C31129G01, 1B30035H01 Ovation analog output module
  • Pacific scientific PC833-001-N-BA communication module
  • HONEYWELL 30733159-002 supplied by Honeywell
  • BENTLY 3500/94M 184826-01 VGA Display Monitor
  • BENTLY 1900/65A 172323-01General Purpose Equipment
  • Bently Nevada 9200-01-01-10-00 Speed Sensor
  • Bently Nevada 330104-00-05-10-02-00 Proximity detector
  • Bently Nevada 330901-05-32-05-02-00 3300 XL NSv proximity sensor
  • Bently Nevada ASSY78462-01U I/O module recording terminal
  • 330901-00-90-05-02-00 Bently Nevada3300 NSv Proximity Probes
  • 330180-X1-CN Bently Nevada Proximity sensor
  • Bently Nevada 3500/92 136188-01 RS232 communication gateway module
  • General Electric Multilin345-E-P1-G1-L-E-E-N-Sn-D-N Transformer Protection
  • ALSTOM MV507A2D1A frequency driver Alspa MV500
  • Carrier CEPL130201-02 6400 General Purpose HVAC Comfort Controller
  • Carrier Transicold dual-view temperature display 76-50202-01/ 76-60876-01
  • Carrier CEPL131258-01-R HVAC system touch screen
  • Carrier Ces0110074-01 circuit control board
  • Carrier handheld controller CEPL130435-01 HK50AA033
  • Carrier-A12-00703-04 3922M1042473 stepper valve module
  • CARRIER 00PSG000469000A CEPL 130602-02-R CEBD 430602-07-RA
  • Hirschmann MM20-M4M4T1T1SBH Industrial Ethernet module
  • IC752SPL011 GE control panel
  • GE ALSTOM IR139-1丨063022350丨80801419丨B0037299control card
  • ALSTOM UT150-1 control module
  • ALSTOM AL132丨AL132A Control Card
  • ABB 2CTB802342R0000 surge protector
  • ABB PM118-7BPM1118 MAGNET (NEO) .50LG
  • Tektronix TDP0500 high pressure differential probe
  • Carrier CEPL130403-02-R Microprocessor Board CEBD430403-11-RC 32GB500382EE
  • BENTLY 106M1079-01-Y Power Module Original
  • ABB system module DLM02 original DO610,DO620
  • 1394-SJT22-A servo driver Allen-Bradley servo equipment
  • MOTOROLA SGLF4136FA PLC control system
  • B&R ECPE84-1B Modulus Input Module Quality Service
  • Foxboro FBM213 communication module supply
  • S-093H 3BHB030478R0309 ABB high voltage frequency conversion rack
  • ABB S-123H 3BHB030479R0512 rack
  • ABB 3BHL000406P0103 VFW 30/265Processor unit
  • ALSTOM V4561983-0100 EPIC II ESP controller
  • MOOG G761-3004B5 H38JOGM5VPH Servovalve