KONG -Y
NameDescriptionContent
Location:

Ovation MVME6100 Single Board Computer Emerson

From: | Author:kongjiang | Time :2025-02-20 | 470 Browse: | Share:

Ovation MVME6100 Single Board Computer Emerson 

Overview

 This chapter contains the following information:

 Board preparation and installation instructions

 ESD precautionary notes

Description

 The MVME6100 is a single-slot, single-board computer based on the MPC7457 processor, the MV64360 system controller, the Tsi148 VME Bridge ASIC, up to 1 GB of ECC-protected DDR 

DRAM, up to 128MB of flash memory, and a dual Gigabit Ethernet interface. Front panel connectors on the MVME6100 board include: two RJ-45 connectors for the Gigabit Ethernet, one RJ-45 connector for the asynchronous serial port with integrated LEDs for BRDFAIL and CPU run indication, and a combined reset and abort switch. The MVME6100 is shipped with one additional asynchronous serial port routed to an on-board header. The MVME6100 contains two IEEE1386.1 PCI, PCI-X capable mezzanine card slots. The PMC slots are 64-bit capable and support both front and rear I/O. All I/O pins of PMC slot 1 and 46 I/O pins of PMC slot 2 are routed to the 5-row DIN, P2 connector. I/O pins 1 through 64 from J14 of PMC slot 1 are routed to row C and row A of P2. I/O pins 1 through 46 from J24 of PMC slot 2 are routed to row D and row Z of P2. The MVME6100 has two planar PCI buses (PCI0 and PCI1). In order to support a more generic PCI bus hierarchy nomenclature, the MV64360 PCI buses will be referred to in this document as PCI bus 0 (root bridge instance 0, bus 0) and PCI bus 1 (root bridge instance 1, bus 0). PCI bus 1 connects to PMC slots 1 and 2 of the board. PCI bus 0 connects to the Tsi148 VME Bridge ASIC and PMCspan bridge (PCI6520). This interface operates at PCI-X (133 MHz) speed. Both PCI planar buses are controlled by the MV64360 system controller. Voltage Input/Output (VIO) for PCI bus 1 is set by the location of the PMC keying pins; both pins should be set to designate the same VIO, either +3.3V or +5V

The MVME6100 board interfaces to the VMEbus via the P1 and P2 connectors, which use 5-row 160-pin connectors as specified in the VME64 Extension Standard. It also draws +12V and +5V power from the VMEbus backplane through these two connectors. The +3.3V, +2.5V, +1.8V, and processor core supplies are regulated on-board from the +5V power. For maximum VMEbus performance, the MVME6100 should be mounted in a VME64x compatible backplane (5-row). 2eSST transfers are not supported when a 3-row backplane is used. The MVME6100 supports multiple modes of I/O operation. By default, the board is configured for Ethernet port 2 to the front panel (non-specific transition module), and PMC slot 1 in IPMC mode. The board can be configured to route Ethernet port 2 to P2 and support MVME712M or MVME761 transition modules. The front/rear Ethernet and transition module options are configured by jumper block J30. Selection of PMC slot 1 in PMC or IPMC mode is done by the jumper blocks J10, J15-J18, and J25-J28 (see Table 1-2 on page 19). IPMC mode is selected when an IPMC712 or IPMC761 module is used. If an IPMC is uVerify that hardware is installed and the power/peripheral cables connected are appropriate for your system configuration. Replace the chassis or system cover, reconnect the system to the AC or DC power source, and turn the equipment power onsed, J30 should be configured for the appropriate transition module (see J30 configuration options as illustrated in Front/Rear Ethernet and Transition Module Options Header (J30) on page 23). The IPMC712 and IPMC761 use AD11 as the IDSEL line for the Winbond PCI-ISA bridge device. This device supplies the four serial and one parallel port of the IPMC7xx module. The Discovery II PHB (MV64360) does not recognize address lines below AD16. For this reason, although an IPMC7xx module may be used on an MVME6100, the serial and parallel ports are not available, nor addressable. This issue will be resolved at a later date. Other functions, such as Ethernet and SCSI interfaces, are function independent of the Winbond IDSEL line. The wide SCSI interface can only be supported through IPMC connector J3. PMC mode is backwards compatible with the MVME5100 and MVME5500 and is accomplished by configuring the on-board jumpers

Getting Started

This section provides an overview of the steps necessary to install and power up the MVME6100 and a brief section on unpacking and ESD precautions.

Overview of Startup Procedures

The following table lists the things you will need to do before you can use this board and tells where to find the information you need to perform each step. Be sure to read this entire chapter, including all Caution and Warning notes, before you begin

Unpacking Guidelines

Unpack the equipment from the shipping carton. Refer to the packing list and verify that all items are present. Save the packing material for storing and reshipping of equipment

If the shipping carton is damaged upon receipt, request that the carrier’s agent be present during the unpacking and inspection of the equipment

Configuring the Hardware

This section discusses certain hardware and software tasks that may need to be performed prior to installing the board in a chassis. To produce the desired configuration and ensure proper operation of the MVME6100, you may need to carry out certain hardware modifications before installing the module. Most options on the MVME6100 are software configurable. Configuration changes are made by setting bits in control registers after the board is installed in a system

Jumpers/switches are used to control those options that are not software configurable. These jumper settings are described further on in this section. If you are resetting the board jumpers from their default settings, it is important to verify that all settings are reset properly. Figure 1-1 illustrates the placement of the jumpers, headers, connectors, switches, and various other components on the MVME6100. There are several manually configurable headers on the MVME6100 and their settings are shown in Table 1-2. Each header’s default setting is enclosed in brackets. For pin assignments on the MVME6100, refer to Chapter 5, Pin Assignments. Items in brackets are factory default settings

The MVME6100 is factory tested and shipped with the configuration described in the following sections.

SCON Header (J7)

A 3-pin planar header allows the choice for auto/enable/disable SCON VME configuration. A jumper installed across pins 1 and 2 configures for SCON always enabled. A jumper installed across pins 2 and 3 configures for SCON disabled. No jumper installed configures for auto SCON.

PMC/IPMC Selection Headers (J10, J15 — J18, J25 — J28)

Nine 3-pin planar headers are for PMC/IPMC mode I/O selection for PMC slot 1. These nine headers can also be combined into one single header block where a block shunt can be used as a jumper

A jumper installed across pins 1 and 2 on all nine headers selects PMC1 for PMC I/O mode. A jumper across pins 2 and 3 on all nine headers selects IPMC I/O mode

PMC I/O Voltage Configuration

The onboard PMC sites may be configured to support 3.3V or 5.0V I/O PMC modules. To support 3.3V or 5.0V I/O PMC modules, both PMC sites on the MVME6100 have I/O keying pins. One pin must be installed in each PMC site and both PMC sites must have their keying pins configured he same way. If both keying pins are not in the same location or if the keying pins are not installed, the PMC sites will not function. Note that setting the PMC I/O voltage to 5.0V forces the PMC sites to operate in PCI mode instead of PCI-X mode. The VIO keying pins are the silver colored pins located either in the middle of each set of four PMC site connectors or just in front of those connectors. They serve two functions on the MVME6100: both as jumpers to select the PCIbus VIO signaling voltage for the PMC sites, and as keys to permit mounting of PMC cards that are compatible with that VIO signaling voltage

(or to exclude incompatible PMC cards). In the default position in the middle of the four PMC site connectors, the signaling voltage for the PMC sites is set to 5.0V. When the keying pins are moved to the alternate location in front of their set of four PMC connectors, the signaling voltage for the PMC sites is set for 3.3V. 1.4.4 The keying pins for both PMC sites must be set to the same signaling voltage. Note also that the signaling voltage has an effect on the PCI bus clock speed for the PMC sites. At 5.0V signaling, the PCI bus clock speed is limited to 33 MHz, whereas 3.3V signaling voltage supports conventional PCIbus clock speeds of 33 or 66 MHz, and PCIx clock speeds of 66 or 100MHz. A PMC card that requires 5.0V VIO only signaling has a hole in the middle of its four PMC connectors, such that it fits over the MVME6100's keying pin in that location. With the MVME6100's keying pin in the 3.3V location, that PMC card would be physically unable to be mounted. Similarly, a PMC card that requires 3.3V VIO-only signaling has its keying hole located just to the front of its four PMC connectors, and will only fit to the MVME6100 when the keying pin is located there. However, most modern PMC cards are universal with respect to the VIO signaling voltage they support, and have keying holes in both locations; that is, they will fit on the MVME6100's PMC site with the key in either location. For these PMC cards, it is recommended setting the MVME6100's keying pins to the 3.3V VIO signaling position, to allow the maximum PCIbus clock speed

Front/Rear Ethernet and Transition Module Options Header (J30)

A 40-pin planar header allows for selecting P2 options. Jumpers installed across Row A pins 3 10 and Row B pins 3-10 enable front Ethernet access. Jumpers installed across Row B pins 3-10 and Row C pins 3-10 enable P2 (rear) Gigabit Ethernet. Only when front Ethernet is enabled can the jumpers be installed across Row C and Row D on pins 1-10 to enable P2 (rear) PMC I/O. Note that all jumpers must be installed across the same two rows (all between Row A and Row B and/or Row C and Row D, or all between Row B and Row C).

SROM Configuration Switch (S3)

A part of the 8-position SMT switch, S3 enables/disables the MV64360 SROM initialization and all I2C EEPROM write protection. The SROM Init switch is OFF to disable the MV64360 device initialization via the I2C SROM. The switch is ON to enable this sequence.

The SROM WP switch is OFF to enable write protection on all I2C. The switch is ON to disable the I2C EEPROM write protection.

Setting the individual position to ON forces the corresponding signal to zero. If the board is installed in a 5-row backplane, the geographical address is defined by the backplane and positions 3-8 of S3 should be set to OFF. The default setting is OFF

Flash Boot Bank Select Configuration Switch (S4)

A 4-position SMT configuration switch is located on the board to control Flash Bank B Boot block write-protect and Flash Bank A write-protect. Select the Flash Boot bank and the programmed/safe start ENV settings. It is recommended that Bank B Write Protect always be enabled. The Bank B Boot WP switch is OFF to indicate that the Flash Bank B Boot block is write protected. The switch is ON to indicate no write-protection of Bank B Boot block. The Bank A WP switch is OFF to indicate that the entire Flash Bank A is write-protected. The switch is ON to indicate no write-protection of Bank A Boot block. When the Boot Bank Sel Switch is ON, the board boots from Bank B, when OFF, the board boots from Bank A. Default is ON (boot from Bank B). When the Safe Start switch is set OFF, normal boot sequence should be followed by MOTLoad. When ON, MOTLoad executes Safe Start, during which the user can select the Alternate Boot Image

Installing the Blade

Procedure Use the following steps to install the MVME6100 into your computer chassis. 

 1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to an electrical ground (refer to Unpacking Guidelines). The ESD strap must be secured to your wrist and to ground throughout the procedure. 

 2. Remove any filler panel that might fill that slot. 

 3. Install the top and bottom edge of the MVME6100 into the guides of the chassis.

4. Ensure that the levers of the two injector/ejectors are in the outward position. 

 5. Slide the MVME6100 into the chassis until resistance is felt. 

 6. Simultaneously move the injector/ejector levers in an inward direction. 

 7. Verify that the MVME6100 is properly seated and secure it to the chassis using the two screws located adjacent to the injector/ejector levers. 

 8. Connect the appropriate cables to the MVME6100. To remove the board from the chassis, press the red locking tabs (IEEE handles only) and reverse the procedure.

Connecting to Peripherals

When the MVME6100 is installed in a chassis, you are ready to connect peripherals and apply power to the board

Completing the Installation

Verify that hardware is installed and the power/peripheral cables connected are appropriate for your system configuration. Replace the chassis or system cover, reconnect the system to the AC or DC power source, and turn the equipment power on


  • ALSTOM COP232.2 VME A32/D32, 029.232 446 controller unit
  • ICS TRIPLEX T8111C​ Trusted TMR Processor
  • VMIC VMIVME-7740 VME Single Board Compute 750
  • foxboro FBM232 Field Device System Integrator Module P0926GW
  • GE 04220HL21204A IPC Control Module
  • ABB 3BSE000860R1 SB510 Backup Power
  • ABB 0504994880 Controller unit
  • ABB PFSA140 3BSE006503R1 Industrial robot Supply Unit
  • ABB 5SHX1445H0002 3BHL000387P0101 POWER IGCT unit
  • ABB 128877-103 CABLE, SP1200 IR DET.
  • ABB CI853K01 and TP853 RS-232C Interface
  • ABB REM610 MOTOR PROTECTION RELAY REM610C11HCNR
  • ABB IGBT 5SDF0860H0003 5SDF1045H0002 unit
  • ABB TC512V1 3BSE018059R1 RS485 Twisted pair Modem
  • ABB DO880 S800HI 3BSE028602R1 Digital Output
  • ABB GDD360C 3BHE047217R0101 Advanced Automation Solution
  • ABB UCD240A101 3BHE022287R0101 controller unit
  • ABB AC800F Ethernet Module AM811F 3BDH000050R1​
  • ABB AC800F Module AM801F 3BDH000040R1
  • ABB SD802F 3BDH000012R1 POWER UNIT
  • ABB operation panel PM820-2 3BSE010798R1 system module
  • ABB operation panel PM820-1 3BSE010797R1 system module
  • ABB CI857K01 3BSE018144R1 INSUM Ethernet Interface
  • ABB PM861/PM861AK01 and TP830 Processor Unit
  • ABB SA811F 3BDH000013R1 Power Supply 115/230 VAC
  • ABB 751010R0815 1VC1T0374A00R unit
  • 5SGY35L4510 Robot high voltage board Brand ABB
  • ABB HVC-02B 3HNA024966-00103 Robot high voltage board Brand HVC02B
  • ABB SLMG99 UNIT
  • ABB 086406-002 PWA.SIOC. SMART I/O CALIP 086407-502
  • ABB UCD208A101 3BHE020018R0101 UNIT
  • ABB UAD154A 3BHE026866R0101 UNIT
  • ABB GCD207B101 3BHE024642R0101 controller card
  • ABB TB820V2 S800 Modulebus module 3BSE013208R1
  • ABB UDD406A 3BHE041465P201 Control unit
  • ABB PPD113B01-10-150000 3BHE023784R1023 unit CPU module
  • ABB 5SHY35L4512 3BHE014105R0001 5SXE08-0166 IGCT unit
  • ABB Backplane Uni Type3+housing FETD685A1156U01
  • ABB 07DC91C GJR5251400R0202 Digital input and output Unit
  • ABB UNS2881b-P,V1 3BHE009319R0001 UNS2881BPV1 Inspirational system
  • ABB UNS2880B-P,V2 3BHE014967R0002 UNS2880B-PV1 Inspirational system
  • ABB CI810B 3BSE020520R1 AF 100 Fieldbus Comm. Interface
  • ABB FM9925a-E HIEE451116R0001 Interface Module Card
  • Bently 2300/25 0002 Vibration Monitors
  • Bently 2300/20 0002 Vibration Monitors
  • ALSTOM VP327 020-23EU 75X-6025-29 Control mainboard VP32702
  • ABB NE802 3BSE080237R1 Industrial switch
  • ABB 3BSE080207R1 NE810 Industrial switch
  • MOTOROLA MVME2400 VME Processor Modules
  • ABB 3BHE021481R0001 intelligent current distr UNIT
  • MOTOROLA MVME2434 VME Processor Modules
  • METSO PDP606 CONTROLLER unit
  • WOODWARD PG-PL-29 Governor 8577-613
  • GE IS230TNRLH1B Combination module kit Mark VI
  • GE IS230TNAIH2C Combination module kit Mark VI
  • ABB 3ASC25H204 DAPU 100 Control board I/O
  • ABB 3BHE014070R0101 V PPC905AE101 CCB-2 COMPLETE
  • ABB PRC3BSE050198R1 PM866K01 Processor Unit
  • Kongsberg RAIV400 600370 Remote Analogue Input
  • ABB SPSED01 event sequence module
  • ABB HIEE300900R0001 PP C322 BE01 PSR-2 processor + fieldbus
  • ABB 3BHE003604R0102 UFC765AE102 circuit board
  • ABB ACU-01B 3HNA024871-001 Robot controller
  • ABB XVC770BE101 3BHE021083R0101 circuit board
  • ABB UAC383AE01 HIEE300890R0001 Module
  • ABB REF610C11LCNP FEEDER PROTECTION RELAY
  • ABB MT91 Operator Panel MT-91-ARC FP A
  • ABB XUD194 XUD194A 3BHC018137R0001 module base
  • ABB 5SHY4045L0001 3BHB018162 3BHE009681R0101 GVC750BE101
  • ABB G2000A5.7ST graphical operation panel (HMI)
  • ABB 3BHE017628R0002 PPD115A02 SG579989013
  • ABB Motor Protection and Control REM615 Product Guide
  • ABB PFTL101B 3BSE004185R1 2.0KN sensor
  • ABB PFCL201CE 50KN 3BSX802939-108 sensor
  • ABB 3BHE023784R2530 PPD113B01-25-111000 AC 800PEC
  • ABB 3BHE046836R0101 GF D563 A101 LCI Conv. Interface (LIN)
  • ABB PPD512A10-454000 3BHE040375R103E PPD512 丨AC800PEC
  • ABB PPD117A3011 3BHE030410R3011 excitation controller
  • ABB AC800M PM891 3BSE053240R1 Processor module
  • ABB PP882 3BSE069275R1 HMI operating touch screen
  • ABB HIEE205014R0001 UNC 4673A,V1 Analog Measuring Card
  • ABB 128057-204 ASPC ASSY, W/-004
  • ABB 3BHB006716R0277 SYN 5302a-Z,V277: Auto dual channel Syn
  • ABB PFSK 163 V3 3BSE016323R3 Module
  • ABB 3BUS208796-001 HKQCS PARTS ON LINE
  • ABB 2VAA008425R1 RMU610 Base for redundant cRBX01
  • ABB 3BSE018876R1 PFSK 151 DSP-Signal processing
  • Westinghouse 1C31129G03 1C31129G01, 1B30035H01 Ovation analog output module
  • Pacific scientific PC833-001-N-BA communication module
  • HONEYWELL 30733159-002 supplied by Honeywell
  • BENTLY 3500/94M 184826-01 VGA Display Monitor
  • BENTLY 1900/65A 172323-01General Purpose Equipment
  • Bently Nevada 9200-01-01-10-00 Speed Sensor
  • Bently Nevada 330104-00-05-10-02-00 Proximity detector
  • Bently Nevada 330901-05-32-05-02-00 3300 XL NSv proximity sensor
  • Bently Nevada ASSY78462-01U I/O module recording terminal
  • 330901-00-90-05-02-00 Bently Nevada3300 NSv Proximity Probes
  • 330180-X1-CN Bently Nevada Proximity sensor
  • Bently Nevada 3500/92 136188-01 RS232 communication gateway module
  • General Electric Multilin345-E-P1-G1-L-E-E-N-Sn-D-N Transformer Protection
  • ALSTOM MV507A2D1A frequency driver Alspa MV500
  • Carrier CEPL130201-02 6400 General Purpose HVAC Comfort Controller
  • Carrier Transicold dual-view temperature display 76-50202-01/ 76-60876-01
  • Carrier CEPL131258-01-R HVAC system touch screen
  • Carrier Ces0110074-01 circuit control board
  • Carrier handheld controller CEPL130435-01 HK50AA033
  • Carrier-A12-00703-04 3922M1042473 stepper valve module
  • CARRIER 00PSG000469000A CEPL 130602-02-R CEBD 430602-07-RA
  • Hirschmann MM20-M4M4T1T1SBH Industrial Ethernet module
  • IC752SPL011 GE control panel
  • GE ALSTOM IR139-1丨063022350丨80801419丨B0037299control card
  • ALSTOM UT150-1 control module
  • ALSTOM AL132丨AL132A Control Card
  • ABB 2CTB802342R0000 surge protector
  • ABB PM118-7BPM1118 MAGNET (NEO) .50LG
  • Tektronix TDP0500 high pressure differential probe
  • Carrier CEPL130403-02-R Microprocessor Board CEBD430403-11-RC 32GB500382EE
  • BENTLY 106M1079-01-Y Power Module Original
  • ABB system module DLM02 original DO610,DO620
  • 1394-SJT22-A servo driver Allen-Bradley servo equipment
  • MOTOROLA SGLF4136FA PLC control system
  • B&R ECPE84-1B Modulus Input Module Quality Service
  • Foxboro FBM213 communication module supply
  • S-093H 3BHB030478R0309 ABB high voltage frequency conversion rack
  • ABB S-123H 3BHB030479R0512 rack
  • ABB 3BHL000406P0103 VFW 30/265Processor unit
  • ALSTOM V4561983-0100 EPIC II ESP controller
  • MOOG G761-3004B5 H38JOGM5VPH Servovalve