Ovation MVME6100 Single Board Computer Emerson
Overview
This chapter contains the following information:
Board preparation and installation instructions
ESD precautionary notes
Description
The MVME6100 is a single-slot, single-board computer based on the MPC7457 processor, the MV64360 system controller, the Tsi148 VME Bridge ASIC, up to 1 GB of ECC-protected DDR
DRAM, up to 128MB of flash memory, and a dual Gigabit Ethernet interface. Front panel connectors on the MVME6100 board include: two RJ-45 connectors for the Gigabit Ethernet, one RJ-45 connector for the asynchronous serial port with integrated LEDs for BRDFAIL and CPU run indication, and a combined reset and abort switch. The MVME6100 is shipped with one additional asynchronous serial port routed to an on-board header. The MVME6100 contains two IEEE1386.1 PCI, PCI-X capable mezzanine card slots. The PMC slots are 64-bit capable and support both front and rear I/O. All I/O pins of PMC slot 1 and 46 I/O pins of PMC slot 2 are routed to the 5-row DIN, P2 connector. I/O pins 1 through 64 from J14 of PMC slot 1 are routed to row C and row A of P2. I/O pins 1 through 46 from J24 of PMC slot 2 are routed to row D and row Z of P2. The MVME6100 has two planar PCI buses (PCI0 and PCI1). In order to support a more generic PCI bus hierarchy nomenclature, the MV64360 PCI buses will be referred to in this document as PCI bus 0 (root bridge instance 0, bus 0) and PCI bus 1 (root bridge instance 1, bus 0). PCI bus 1 connects to PMC slots 1 and 2 of the board. PCI bus 0 connects to the Tsi148 VME Bridge ASIC and PMCspan bridge (PCI6520). This interface operates at PCI-X (133 MHz) speed. Both PCI planar buses are controlled by the MV64360 system controller. Voltage Input/Output (VIO) for PCI bus 1 is set by the location of the PMC keying pins; both pins should be set to designate the same VIO, either +3.3V or +5V
The MVME6100 board interfaces to the VMEbus via the P1 and P2 connectors, which use 5-row 160-pin connectors as specified in the VME64 Extension Standard. It also draws +12V and +5V power from the VMEbus backplane through these two connectors. The +3.3V, +2.5V, +1.8V, and processor core supplies are regulated on-board from the +5V power. For maximum VMEbus performance, the MVME6100 should be mounted in a VME64x compatible backplane (5-row). 2eSST transfers are not supported when a 3-row backplane is used. The MVME6100 supports multiple modes of I/O operation. By default, the board is configured for Ethernet port 2 to the front panel (non-specific transition module), and PMC slot 1 in IPMC mode. The board can be configured to route Ethernet port 2 to P2 and support MVME712M or MVME761 transition modules. The front/rear Ethernet and transition module options are configured by jumper block J30. Selection of PMC slot 1 in PMC or IPMC mode is done by the jumper blocks J10, J15-J18, and J25-J28 (see Table 1-2 on page 19). IPMC mode is selected when an IPMC712 or IPMC761 module is used. If an IPMC is uVerify that hardware is installed and the power/peripheral cables connected are appropriate for your system configuration. Replace the chassis or system cover, reconnect the system to the AC or DC power source, and turn the equipment power onsed, J30 should be configured for the appropriate transition module (see J30 configuration options as illustrated in Front/Rear Ethernet and Transition Module Options Header (J30) on page 23). The IPMC712 and IPMC761 use AD11 as the IDSEL line for the Winbond PCI-ISA bridge device. This device supplies the four serial and one parallel port of the IPMC7xx module. The Discovery II PHB (MV64360) does not recognize address lines below AD16. For this reason, although an IPMC7xx module may be used on an MVME6100, the serial and parallel ports are not available, nor addressable. This issue will be resolved at a later date. Other functions, such as Ethernet and SCSI interfaces, are function independent of the Winbond IDSEL line. The wide SCSI interface can only be supported through IPMC connector J3. PMC mode is backwards compatible with the MVME5100 and MVME5500 and is accomplished by configuring the on-board jumpers
Getting Started
This section provides an overview of the steps necessary to install and power up the MVME6100 and a brief section on unpacking and ESD precautions.
Overview of Startup Procedures
The following table lists the things you will need to do before you can use this board and tells where to find the information you need to perform each step. Be sure to read this entire chapter, including all Caution and Warning notes, before you begin
Unpacking Guidelines
Unpack the equipment from the shipping carton. Refer to the packing list and verify that all items are present. Save the packing material for storing and reshipping of equipment
If the shipping carton is damaged upon receipt, request that the carrier’s agent be present during the unpacking and inspection of the equipment
Configuring the Hardware
This section discusses certain hardware and software tasks that may need to be performed prior to installing the board in a chassis. To produce the desired configuration and ensure proper operation of the MVME6100, you may need to carry out certain hardware modifications before installing the module. Most options on the MVME6100 are software configurable. Configuration changes are made by setting bits in control registers after the board is installed in a system
Jumpers/switches are used to control those options that are not software configurable. These jumper settings are described further on in this section. If you are resetting the board jumpers from their default settings, it is important to verify that all settings are reset properly. Figure 1-1 illustrates the placement of the jumpers, headers, connectors, switches, and various other components on the MVME6100. There are several manually configurable headers on the MVME6100 and their settings are shown in Table 1-2. Each header’s default setting is enclosed in brackets. For pin assignments on the MVME6100, refer to Chapter 5, Pin Assignments. Items in brackets are factory default settings
The MVME6100 is factory tested and shipped with the configuration described in the following sections.
SCON Header (J7)
A 3-pin planar header allows the choice for auto/enable/disable SCON VME configuration. A jumper installed across pins 1 and 2 configures for SCON always enabled. A jumper installed across pins 2 and 3 configures for SCON disabled. No jumper installed configures for auto SCON.
PMC/IPMC Selection Headers (J10, J15 — J18, J25 — J28)
Nine 3-pin planar headers are for PMC/IPMC mode I/O selection for PMC slot 1. These nine headers can also be combined into one single header block where a block shunt can be used as a jumper
A jumper installed across pins 1 and 2 on all nine headers selects PMC1 for PMC I/O mode. A jumper across pins 2 and 3 on all nine headers selects IPMC I/O mode
PMC I/O Voltage Configuration
The onboard PMC sites may be configured to support 3.3V or 5.0V I/O PMC modules. To support 3.3V or 5.0V I/O PMC modules, both PMC sites on the MVME6100 have I/O keying pins. One pin must be installed in each PMC site and both PMC sites must have their keying pins configured he same way. If both keying pins are not in the same location or if the keying pins are not installed, the PMC sites will not function. Note that setting the PMC I/O voltage to 5.0V forces the PMC sites to operate in PCI mode instead of PCI-X mode. The VIO keying pins are the silver colored pins located either in the middle of each set of four PMC site connectors or just in front of those connectors. They serve two functions on the MVME6100: both as jumpers to select the PCIbus VIO signaling voltage for the PMC sites, and as keys to permit mounting of PMC cards that are compatible with that VIO signaling voltage
(or to exclude incompatible PMC cards). In the default position in the middle of the four PMC site connectors, the signaling voltage for the PMC sites is set to 5.0V. When the keying pins are moved to the alternate location in front of their set of four PMC connectors, the signaling voltage for the PMC sites is set for 3.3V. 1.4.4 The keying pins for both PMC sites must be set to the same signaling voltage. Note also that the signaling voltage has an effect on the PCI bus clock speed for the PMC sites. At 5.0V signaling, the PCI bus clock speed is limited to 33 MHz, whereas 3.3V signaling voltage supports conventional PCIbus clock speeds of 33 or 66 MHz, and PCIx clock speeds of 66 or 100MHz. A PMC card that requires 5.0V VIO only signaling has a hole in the middle of its four PMC connectors, such that it fits over the MVME6100's keying pin in that location. With the MVME6100's keying pin in the 3.3V location, that PMC card would be physically unable to be mounted. Similarly, a PMC card that requires 3.3V VIO-only signaling has its keying hole located just to the front of its four PMC connectors, and will only fit to the MVME6100 when the keying pin is located there. However, most modern PMC cards are universal with respect to the VIO signaling voltage they support, and have keying holes in both locations; that is, they will fit on the MVME6100's PMC site with the key in either location. For these PMC cards, it is recommended setting the MVME6100's keying pins to the 3.3V VIO signaling position, to allow the maximum PCIbus clock speed
Front/Rear Ethernet and Transition Module Options Header
(J30)
A 40-pin planar header allows for selecting P2 options. Jumpers installed across Row A pins 3
10 and Row B pins 3-10 enable front Ethernet access. Jumpers installed across Row B pins 3-10
and Row C pins 3-10 enable P2 (rear) Gigabit Ethernet. Only when front Ethernet is enabled can
the jumpers be installed across Row C and Row D on pins 1-10 to enable P2 (rear) PMC I/O. Note
that all jumpers must be installed across the same two rows (all between Row A and Row B
and/or Row C and Row D, or all between Row B and Row C).
SROM Configuration Switch (S3)
A part of the 8-position SMT switch, S3 enables/disables the MV64360 SROM initialization and all I2C EEPROM write protection. The SROM Init switch is OFF to disable the MV64360 device initialization via the I2C SROM. The switch is ON to enable this sequence.
The SROM WP switch is OFF to enable write protection on all I2C. The switch is ON to disable the I2C EEPROM write protection.
Setting the individual position to ON forces the corresponding signal to zero. If the board is installed in a 5-row backplane, the geographical address is defined by the backplane and positions 3-8 of S3 should be set to OFF. The default setting is OFF
Flash Boot Bank Select Configuration Switch (S4)
A 4-position SMT configuration switch is located on the board to control Flash Bank B Boot
block write-protect and Flash Bank A write-protect. Select the Flash Boot bank and the
programmed/safe start ENV settings.
It is recommended that Bank B Write Protect always be enabled.
The Bank B Boot WP switch is OFF to indicate that the Flash Bank B Boot block is write
protected. The switch is ON to indicate no write-protection of Bank B Boot block.
The Bank A WP switch is OFF to indicate that the entire Flash Bank A is write-protected. The
switch is ON to indicate no write-protection of Bank A Boot block.
When the Boot Bank Sel Switch is ON, the board boots from Bank B, when OFF, the board boots
from Bank A. Default is ON (boot from Bank B).
When the Safe Start switch is set OFF, normal boot sequence should be followed by MOTLoad.
When ON, MOTLoad executes Safe Start, during which the user can select the Alternate Boot
Image
Installing the Blade
Procedure Use the following steps to install the MVME6100 into your computer chassis.
1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to an electrical ground (refer to Unpacking Guidelines). The ESD strap must be secured to your wrist and to ground throughout the procedure.
2. Remove any filler panel that might fill that slot.
3. Install the top and bottom edge of the MVME6100 into the guides of the chassis.
4. Ensure that the levers of the two injector/ejectors are in the outward position.
5. Slide the MVME6100 into the chassis until resistance is felt.
6. Simultaneously move the injector/ejector levers in an inward direction.
7. Verify that the MVME6100 is properly seated and secure it to the chassis using the two screws located adjacent to the injector/ejector levers.
8. Connect the appropriate cables to the MVME6100. To remove the board from the chassis, press the red locking tabs (IEEE handles only) and reverse the procedure.
Connecting to Peripherals
When the MVME6100 is installed in a chassis, you are ready to connect peripherals and apply power to the board
Completing the Installation
Verify that hardware is installed and the power/peripheral cables connected are appropriate for your system configuration. Replace the chassis or system cover, reconnect the system to the AC or DC power source, and turn the equipment power on
Add: Building F05, High-tech Software Park, Xiamen City, Fujian Province
Tel: 0592-5211302
Mobile: 17750019513 (WhatsApp)
Email: yy4291644@gmail.com
ivy@kongjiangauto.com
Website: https://www.abb-sis.com