KONG -Y
NameDescriptionContent
Location:

Ovation MVME6100 Single Board Computer Emerson

From: | Author:kongjiang | Time :2025-02-20 | 866 Browse: | Share:

Ovation MVME6100 Single Board Computer Emerson 

Overview

 This chapter contains the following information:

 Board preparation and installation instructions

 ESD precautionary notes

Description

 The MVME6100 is a single-slot, single-board computer based on the MPC7457 processor, the MV64360 system controller, the Tsi148 VME Bridge ASIC, up to 1 GB of ECC-protected DDR 

DRAM, up to 128MB of flash memory, and a dual Gigabit Ethernet interface. Front panel connectors on the MVME6100 board include: two RJ-45 connectors for the Gigabit Ethernet, one RJ-45 connector for the asynchronous serial port with integrated LEDs for BRDFAIL and CPU run indication, and a combined reset and abort switch. The MVME6100 is shipped with one additional asynchronous serial port routed to an on-board header. The MVME6100 contains two IEEE1386.1 PCI, PCI-X capable mezzanine card slots. The PMC slots are 64-bit capable and support both front and rear I/O. All I/O pins of PMC slot 1 and 46 I/O pins of PMC slot 2 are routed to the 5-row DIN, P2 connector. I/O pins 1 through 64 from J14 of PMC slot 1 are routed to row C and row A of P2. I/O pins 1 through 46 from J24 of PMC slot 2 are routed to row D and row Z of P2. The MVME6100 has two planar PCI buses (PCI0 and PCI1). In order to support a more generic PCI bus hierarchy nomenclature, the MV64360 PCI buses will be referred to in this document as PCI bus 0 (root bridge instance 0, bus 0) and PCI bus 1 (root bridge instance 1, bus 0). PCI bus 1 connects to PMC slots 1 and 2 of the board. PCI bus 0 connects to the Tsi148 VME Bridge ASIC and PMCspan bridge (PCI6520). This interface operates at PCI-X (133 MHz) speed. Both PCI planar buses are controlled by the MV64360 system controller. Voltage Input/Output (VIO) for PCI bus 1 is set by the location of the PMC keying pins; both pins should be set to designate the same VIO, either +3.3V or +5V

The MVME6100 board interfaces to the VMEbus via the P1 and P2 connectors, which use 5-row 160-pin connectors as specified in the VME64 Extension Standard. It also draws +12V and +5V power from the VMEbus backplane through these two connectors. The +3.3V, +2.5V, +1.8V, and processor core supplies are regulated on-board from the +5V power. For maximum VMEbus performance, the MVME6100 should be mounted in a VME64x compatible backplane (5-row). 2eSST transfers are not supported when a 3-row backplane is used. The MVME6100 supports multiple modes of I/O operation. By default, the board is configured for Ethernet port 2 to the front panel (non-specific transition module), and PMC slot 1 in IPMC mode. The board can be configured to route Ethernet port 2 to P2 and support MVME712M or MVME761 transition modules. The front/rear Ethernet and transition module options are configured by jumper block J30. Selection of PMC slot 1 in PMC or IPMC mode is done by the jumper blocks J10, J15-J18, and J25-J28 (see Table 1-2 on page 19). IPMC mode is selected when an IPMC712 or IPMC761 module is used. If an IPMC is uVerify that hardware is installed and the power/peripheral cables connected are appropriate for your system configuration. Replace the chassis or system cover, reconnect the system to the AC or DC power source, and turn the equipment power onsed, J30 should be configured for the appropriate transition module (see J30 configuration options as illustrated in Front/Rear Ethernet and Transition Module Options Header (J30) on page 23). The IPMC712 and IPMC761 use AD11 as the IDSEL line for the Winbond PCI-ISA bridge device. This device supplies the four serial and one parallel port of the IPMC7xx module. The Discovery II PHB (MV64360) does not recognize address lines below AD16. For this reason, although an IPMC7xx module may be used on an MVME6100, the serial and parallel ports are not available, nor addressable. This issue will be resolved at a later date. Other functions, such as Ethernet and SCSI interfaces, are function independent of the Winbond IDSEL line. The wide SCSI interface can only be supported through IPMC connector J3. PMC mode is backwards compatible with the MVME5100 and MVME5500 and is accomplished by configuring the on-board jumpers

Getting Started

This section provides an overview of the steps necessary to install and power up the MVME6100 and a brief section on unpacking and ESD precautions.

Overview of Startup Procedures

The following table lists the things you will need to do before you can use this board and tells where to find the information you need to perform each step. Be sure to read this entire chapter, including all Caution and Warning notes, before you begin

Unpacking Guidelines

Unpack the equipment from the shipping carton. Refer to the packing list and verify that all items are present. Save the packing material for storing and reshipping of equipment

If the shipping carton is damaged upon receipt, request that the carrier’s agent be present during the unpacking and inspection of the equipment

Configuring the Hardware

This section discusses certain hardware and software tasks that may need to be performed prior to installing the board in a chassis. To produce the desired configuration and ensure proper operation of the MVME6100, you may need to carry out certain hardware modifications before installing the module. Most options on the MVME6100 are software configurable. Configuration changes are made by setting bits in control registers after the board is installed in a system

Jumpers/switches are used to control those options that are not software configurable. These jumper settings are described further on in this section. If you are resetting the board jumpers from their default settings, it is important to verify that all settings are reset properly. Figure 1-1 illustrates the placement of the jumpers, headers, connectors, switches, and various other components on the MVME6100. There are several manually configurable headers on the MVME6100 and their settings are shown in Table 1-2. Each header’s default setting is enclosed in brackets. For pin assignments on the MVME6100, refer to Chapter 5, Pin Assignments. Items in brackets are factory default settings

The MVME6100 is factory tested and shipped with the configuration described in the following sections.

SCON Header (J7)

A 3-pin planar header allows the choice for auto/enable/disable SCON VME configuration. A jumper installed across pins 1 and 2 configures for SCON always enabled. A jumper installed across pins 2 and 3 configures for SCON disabled. No jumper installed configures for auto SCON.

PMC/IPMC Selection Headers (J10, J15 — J18, J25 — J28)

Nine 3-pin planar headers are for PMC/IPMC mode I/O selection for PMC slot 1. These nine headers can also be combined into one single header block where a block shunt can be used as a jumper

A jumper installed across pins 1 and 2 on all nine headers selects PMC1 for PMC I/O mode. A jumper across pins 2 and 3 on all nine headers selects IPMC I/O mode

PMC I/O Voltage Configuration

The onboard PMC sites may be configured to support 3.3V or 5.0V I/O PMC modules. To support 3.3V or 5.0V I/O PMC modules, both PMC sites on the MVME6100 have I/O keying pins. One pin must be installed in each PMC site and both PMC sites must have their keying pins configured he same way. If both keying pins are not in the same location or if the keying pins are not installed, the PMC sites will not function. Note that setting the PMC I/O voltage to 5.0V forces the PMC sites to operate in PCI mode instead of PCI-X mode. The VIO keying pins are the silver colored pins located either in the middle of each set of four PMC site connectors or just in front of those connectors. They serve two functions on the MVME6100: both as jumpers to select the PCIbus VIO signaling voltage for the PMC sites, and as keys to permit mounting of PMC cards that are compatible with that VIO signaling voltage

(or to exclude incompatible PMC cards). In the default position in the middle of the four PMC site connectors, the signaling voltage for the PMC sites is set to 5.0V. When the keying pins are moved to the alternate location in front of their set of four PMC connectors, the signaling voltage for the PMC sites is set for 3.3V. 1.4.4 The keying pins for both PMC sites must be set to the same signaling voltage. Note also that the signaling voltage has an effect on the PCI bus clock speed for the PMC sites. At 5.0V signaling, the PCI bus clock speed is limited to 33 MHz, whereas 3.3V signaling voltage supports conventional PCIbus clock speeds of 33 or 66 MHz, and PCIx clock speeds of 66 or 100MHz. A PMC card that requires 5.0V VIO only signaling has a hole in the middle of its four PMC connectors, such that it fits over the MVME6100's keying pin in that location. With the MVME6100's keying pin in the 3.3V location, that PMC card would be physically unable to be mounted. Similarly, a PMC card that requires 3.3V VIO-only signaling has its keying hole located just to the front of its four PMC connectors, and will only fit to the MVME6100 when the keying pin is located there. However, most modern PMC cards are universal with respect to the VIO signaling voltage they support, and have keying holes in both locations; that is, they will fit on the MVME6100's PMC site with the key in either location. For these PMC cards, it is recommended setting the MVME6100's keying pins to the 3.3V VIO signaling position, to allow the maximum PCIbus clock speed

Front/Rear Ethernet and Transition Module Options Header (J30)

A 40-pin planar header allows for selecting P2 options. Jumpers installed across Row A pins 3 10 and Row B pins 3-10 enable front Ethernet access. Jumpers installed across Row B pins 3-10 and Row C pins 3-10 enable P2 (rear) Gigabit Ethernet. Only when front Ethernet is enabled can the jumpers be installed across Row C and Row D on pins 1-10 to enable P2 (rear) PMC I/O. Note that all jumpers must be installed across the same two rows (all between Row A and Row B and/or Row C and Row D, or all between Row B and Row C).

SROM Configuration Switch (S3)

A part of the 8-position SMT switch, S3 enables/disables the MV64360 SROM initialization and all I2C EEPROM write protection. The SROM Init switch is OFF to disable the MV64360 device initialization via the I2C SROM. The switch is ON to enable this sequence.

The SROM WP switch is OFF to enable write protection on all I2C. The switch is ON to disable the I2C EEPROM write protection.

Setting the individual position to ON forces the corresponding signal to zero. If the board is installed in a 5-row backplane, the geographical address is defined by the backplane and positions 3-8 of S3 should be set to OFF. The default setting is OFF

Flash Boot Bank Select Configuration Switch (S4)

A 4-position SMT configuration switch is located on the board to control Flash Bank B Boot block write-protect and Flash Bank A write-protect. Select the Flash Boot bank and the programmed/safe start ENV settings. It is recommended that Bank B Write Protect always be enabled. The Bank B Boot WP switch is OFF to indicate that the Flash Bank B Boot block is write protected. The switch is ON to indicate no write-protection of Bank B Boot block. The Bank A WP switch is OFF to indicate that the entire Flash Bank A is write-protected. The switch is ON to indicate no write-protection of Bank A Boot block. When the Boot Bank Sel Switch is ON, the board boots from Bank B, when OFF, the board boots from Bank A. Default is ON (boot from Bank B). When the Safe Start switch is set OFF, normal boot sequence should be followed by MOTLoad. When ON, MOTLoad executes Safe Start, during which the user can select the Alternate Boot Image

Installing the Blade

Procedure Use the following steps to install the MVME6100 into your computer chassis. 

 1. Attach an ESD strap to your wrist. Attach the other end of the ESD strap to an electrical ground (refer to Unpacking Guidelines). The ESD strap must be secured to your wrist and to ground throughout the procedure. 

 2. Remove any filler panel that might fill that slot. 

 3. Install the top and bottom edge of the MVME6100 into the guides of the chassis.

4. Ensure that the levers of the two injector/ejectors are in the outward position. 

 5. Slide the MVME6100 into the chassis until resistance is felt. 

 6. Simultaneously move the injector/ejector levers in an inward direction. 

 7. Verify that the MVME6100 is properly seated and secure it to the chassis using the two screws located adjacent to the injector/ejector levers. 

 8. Connect the appropriate cables to the MVME6100. To remove the board from the chassis, press the red locking tabs (IEEE handles only) and reverse the procedure.

Connecting to Peripherals

When the MVME6100 is installed in a chassis, you are ready to connect peripherals and apply power to the board

Completing the Installation

Verify that hardware is installed and the power/peripheral cables connected are appropriate for your system configuration. Replace the chassis or system cover, reconnect the system to the AC or DC power source, and turn the equipment power on


  • UniOP eTOP308 ETOP308U301 HMI Panel
  • UniOP ePALM10-0061 Handheld Robot Trainer
  • UniOP CP01R-04 CP05R-04 and CP01F-02
  • Uniop MD02R-04 - MD02R-04-0045 Industrial PLC Workstation
  • Uniop Cp02r-04-0021 Operating Interface
  • UniOP ECT-16-0045 High-Performance Color Touchscreen HMI
  • UniOP ERT-16 - Industrial PLC Workstation
  • UniOP ePAD04-0046 Compact Industrial Interface
  • UniOP BKDR-16 High-Reliability Monochrome Operator Interface
  • UniOP MKDR-04-004 Control Unit Panel
  • UniOP eTOP515 Series 500 HMI
  • Woodward 9907-1199 Advanced CPC-II Current-to-Pressure Converter
  • Woodward 8200-1300 High-Precision 505D Steam Turbine Controller
  • ABB PFSK130 3BSE002616R1 Core Signal Conditioning Unit
  • ABB PFSK165 3BSE027778R1 VP74201-933CW07 Signal Processing and Communication Unit
  • ABB PFSK164 3BSE021180R1 Tension sensor module and processing board
  • ABB 3BSE006505R1 PFSK142 Control board
  • ABB PFSK160A 3BSE009514R1 Regulated High-Capacity 24V DC
  • ABB PFSK162 3BSE015088R1 Signal Conditioning and Processing Board
  • ABB PFSK152 3BSE018877R1 Signal concentrator board
  • ABB PFSK151 3BSE018876R1 High-performance signal processing unit
  • ALSTOM PIB1201A 3BEC0067 Power Interface Board (PIB)
  • ALSTOM PIB310 3BHB0190 Adapter Module / Printed Circuit Board (PCB)
  • ALSTOM PIB102A 3BEB0180 Communication Card / PCB Module
  • ALSTOM BGTR8HE 24491276A1004 High-Frequency Power Controller / Rack Module
  • ALSTOM LC105A-1 Digital Discrete Output (Relay)
  • ALSTOM IR139-1 High-Efficiency Inverter / Control Board
  • ALSTOM AM164 Analog Output / Remote I/O
  • ALSTOM LE109A-1 Power System Control and Monitoring Module
  • ALSTOM UT150-1 PID temperature controller / process control board
  • ALSTOM AL132 AL132A STO0982E01 Control Motherboard / CPU Card
  • ALSTOM AS111-1 Analog Output (AO) Module
  • WATLOW AH116-2 Servo Drive / Control Module
  • WATLOW V4555724-0100 Electromechanical Contactor /Power Switch
  • Alstom KCEU142 Digital Protection Relay
  • ALSTOM MMLG01 Test block
  • WATLOW 999D,999A Digital/Analog Dual-Channel Base Unit
  • WATLOW 998D 998A Digital/Analog Dual-Channel Base Unit
  • WATLOW 999D-11FF-AARG Dual-channel digital unit with universal process outputs
  • WATLOW Wattlo 998D-22KK-ARRG is a high-performance dual-channel digital controller
  • WATLOW 996A Single-loop controller
  • WATLOW 996D-11CC-CUGR Single-loop digital controller
  • WATLOW 996D Single-Channel Digital Temperature/Process Controller
  • WATLOW 997D Digital Dual-Channel Base Unit
  • WATLOW 997A Analog Dual-Channel Variant
  • WATLOW DAC / SDAC Digital-to-Analog / Serial-to-Analog Modules
  • WATLOW MLS300-OIT Operator Interface Terminal (Keypad/Display),Discontinued
  • WATLOW CIM300 Communication Interface Module (EIA-232/485),Discontinued
  • WATLOW MLS300-CIM Control Interface Module
  • WATLOW MLS300-AIM,Analog Input Module (16-channel expansion),Discontinued
  • WATLOW MLS300-PM Processor Module (Central CPU),Discontinued
  • Watlow MLS332 32-Loop Processor Base Unit,Discontinued
  • Watlow MLS316 Multi-loop thermal controller
  • Watlow CLS208 C10000CP high-performance, 8-loop PID temperature controller
  • Watlow CAS 16CLS/CAS Multi-loop temperature controller
  • ABB CP555 1SBP260179R1001 Product Overview
  • Watlow MLS300 Multi-Loop Control System
  • Watlow 997D-11CC-JURG SERIES 997 Vertical Limit Control
  • Watlow CLS216 Multi-Loop PID Temperature Controller
  • Watlow NLS300-CIM316 Multi-Loop Control Interface Module
  • Watlow PPC-TB50 (30280-00) Precision Power Controller
  • ABB 3BSE014227R1 RF533 Central Unit
  • WOODWARD 5448-890 SPM-D10 Series One Breaker Synchronizer
  • FOXBORO 43AP-FA42D/PB-AA 43AP Pneumatic Indicating Controllers
  • Stucke Elektronik SYMAP®G generator protection
  • Stucke Elektronik SYMAP®F feeder protection
  • Stucke Elektronik SYMAP®ECG engine control and generator protection
  • Stucke Elektronik SYMAP®EC Engine Control
  • Stucke Elektronik SYMAP®ARC Arc protection system
  • Stucke Elektronik SYMAP®R Digital protection system
  • Stucke Elektronik SYMAP® Compact Digital protection and control equipment
  • LEYBELOD SV40 BI Single-stage, oil-sealed rotary vane pump
  • LEYBELOD TURBOVAC 361 (C) Suspension turbomolecular pump
  • LAND M2300/1100C-V Industrial Control Module
  • LAMBDA LZS-1500-3 Single Output Industrial Power Supplies
  • LAMBDA LZS-A1500-3-001 POWER SUPPLY
  • LAMBDA HWS1500-24 Power supply
  • Kongsberg K-Chief Control Room Panel (CRP) 603525
  • Kongsberg MSI-12 Input/Output Module 339368
  • Kongsberg dPSC Dual Process Segment Controller Module 8100183
  • HHirschmann Modular OpenRail Fast Ethernet switch 8-24 ports MS20-1600SAAEHH08.0
  • Hirschmann MM20-Z6Z6Z6Z6SAHH ETHERNET / Fast-ETHERNET Media Modules
  • Hirschmann MM2-2FXM3/2TX1 ETHERNET / Fast-ETHERNET Media Modules
  • Hirschmann Industrial ETHERNET Switch MICE MS20/MS30
  • Hirschmann MACH102-24TP-FR Gigabit Ethernet industrial workgroup switch
  • Hirschmann MM2-4TX1 MICE switch medium module
  • Hirschmann MICE switch medium module MM2-2FXS2
  • ABB AFS670 19" Ruggedized Switch AFS670-EREEDDDSSEEEEEEEPZYX05.1.0
  • NI Controller for VXI VXIPC-871B
  • GE VMIVME-1150 Serial Communications Controller
  • GE Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE IC660BBD022 I/O module
  • GE Digital Energy D20 Analog Input Module
  • Foxboro FBM I/O cards PBCO-D8-009
  • GE SR750-P5-G5-S5-HI-A20-R-E Multilin Relay
  • ABB 3BSE019050R1000 PFTL 301E 1,0kN, Load cell
  • Foxboro DNBT P0971WV Dual-node bus module of I/A series
  • EPRO MMS6210 Dual-channel axial displacement measurement module
  • EMERSON PMCspan PMC Expansion Mezzanine
  • EMERSON KJ3242X1-BK1 12P4711X042 S-Series H1 Card
  • EMERSON KJ4006X1-BD1 Interface Terminal Block
  • EMERSON KJ4001X1-CK1 40-Pin Mass Termination Block
  • ABB UCD224A103 Industrial controller module
  • ABB ARCOL 0339 Solid-state motor controller
  • ABB UFC718AE01 HIEE300936R0101 Main Circuit Interface Board
  • Abaco VME-REPEATL-485 VMEBus Repeaters
  • Abaco VME-4900 Digital-to Synchro/Resolver Board
  • Abaco VME-4911 digital converter board
  • Abaco XM-664-80 Transition module with rear I/O access to VIPC664
  • Abaco TPMCC 6U VME triple PMC carrier for use with the V5C SBC
  • Abaco VIPC8243 is an intelligent 6U VME carrier board
  • Abaco DCPMC Conduction-cooled or Rugged PMC Carrier
  • Abaco CP237 is a 6U CompactPCI Card
  • Abaco VME-3413 32-Channel Signal Conditioning Board
  • Abaco VME-3125 VME Analog I/O Input Boards
  • Alstom GE SPU232.2. 029.366.817 Single Processor Unit SPU2322
  • ALSTOM COP232.2 VME A32/D32, 029.232 446 controller unit
  • ICS TRIPLEX T8111C​ Trusted TMR Processor
  • VMIC VMIVME-7740 VME Single Board Compute 750
  • foxboro FBM232 Field Device System Integrator Module P0926GW
  • GE 04220HL21204A IPC Control Module
  • ABB 3BSE000860R1 SB510 Backup Power
  • ABB 0504994880 Controller unit
  • ABB PFSA140 3BSE006503R1 Industrial robot Supply Unit
  • ABB 5SHX1445H0002 3BHL000387P0101 POWER IGCT unit
  • ABB 128877-103 CABLE, SP1200 IR DET.
  • ABB CI853K01 and TP853 RS-232C Interface
  • ABB REM610 MOTOR PROTECTION RELAY REM610C11HCNR