KONG -Y
NameDescriptionContent
Location:
product
IS220PPRAS1B  SCLS CARD ASSY
❤ Add to collection

IS220PPRAS1B SCLS CARD ASSY

IS220PPRAS1B  SCLS CARD ASSY
U.S.$5920.00
U.S.$3085.00
U.S.$2930.75
U.S.$2869.05
Weight:3.500KG
Quantity:
(Inventory: 3)
Buy now
Add to cart
Description
IS220PPRAS1B  SCLS CARD ASSY

Part Number IS220PPRAS1B Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI Function Module Availability In StockIS220PPRAS1B is an Emergency Turbine Protection I/O Pack developed by GE. An independent backup Overspeed protection mechanism is provided by this I/O pack and associated TREA terminal board. For the principal control and isolated trip contact input, they additionally provide an independent watchdog function. Three triple modular redundant (TMR) PPRA I/O packs installed to a TREA terminal board with the WREA option board included make up a protective system. IS220PPRAS1B Functional Description The standard Mark VIe PPRO Emergency Turbine Protection I/O pack is the ancestor of PPRA. In applications where dual speed sensors per shaft are fanned to three protective I/O packs, it needs new hardware and modified code to provide six speed inputs. The majority of the PPRA's settings, parameters, and behavior are the same as those in the PPRO. The TREA terminal board with the WREA option board is the only one that supports PPRA. Other settings that PPRO supports cannot be used with PPRA. In order to communicate with the control modules through IONet, PPRA additionally has an Ethernet connection. The primary and backup trip prevention systems for the Mark VIe control are built to work together at the trip terminal board level. The Turbine Primary I/O pack (PTUR), when connected with PPRA/TREA, operates a primary trip board (usually TRPA), providing primary protection. A TREA terminal board installed with PPRA offers backup protection. For firmware overspeed, acceleration, deceleration, and a hardware implemented overspeed protection, PPRA supports six speed signals (specified as three sets of speed pairs). It keeps an eye on how the main control is working. A broad range of feedback signals are used by PPRA to keep track of the state and functionality of the TREA trip board. PPRA will trip the backup trip relays on the TREA board and initiate a trip on the primary control if a fault is found. PPRA is completely unrelated to and unaffected by the main control process. IS220PPRAS1B Compatibility TREA requires the WREA option board to be installed on the application-specific circuit board option header connector because PPRA mounts directly on TREA. Only three I/O packs are required for PPRA mounted on TREA with WREA to function properly. In systems with a single controller, the R network of the controller, the S network of the controller, the JY1 connector of the controller, and the JZ1 connector of the controller, should all be linked to the PPRA. The same controller powers all three networks. The R network of the dual controller should be linked to the PPRA on the JX1 connector, the S network to the PPRA on the JY1 connector, and both the R and S networks to the PPRA on the JZ1 connector in systems with dual controllers. To link the R network to the PPRA on the JX1 connection, the S network to the PPRA on the JY1 connector, and the T network to the PPRA on the JZ1 connector in systems with three controllers. IS220PPRAS1B Installation To set up the I/O pack, follow these instructions. Secure the TREA terminal board in place. Connect three I/O packs to the TREA directly. Insert the threaded posts of the module, which are positioned on each side of the Ethernet ports, into the terminal board mounting bracket's slots. Adjust the bracket's position so that the DC-62 pin connector and the terminal board are properly connected. Depending on the system configuration, connect one or two Ethernet wires. It is unaffected by Ethernet connections, and it chooses the appropriate operation for either port. Connect the module to the power supply by plugging in the power connector on the side. Soft-start functionality is built into the I/O module, which controls current levels when it is used. Configure the module using the ToolboxST program as needed. IS220PPRAS1B Operation Processor The I/O pack or module function-specific acquisition board is connected to the processor board. The soft-start circuit ramps up the voltage available on the processor board when input power is applied. The processor reset is turned off and the local power supply is turned on in order. After finishing self-test routines, the processor loads application code from flash memory that is particular to the I/O pack or module type. To verify that the application code, acquisition board, and terminal board are correctly matched, the application code reads the board ID information. When there is a good match, the processor makes an effort to start Ethernet connections by asking for a network address. The dynamic host configuration protocol (DHCP), which is the industry standard, and the terminal board's unique identifier are both used in the address request. Following Ethernet startup, the CPU runs the application, programs the on-board logic, and permits the acquisition board to start working. Auto-Reconfiguration The Auto-Reconfiguration capability enables the operator to swap I/O packs without having to manually reconfigure each pack or module. When the Auto-Reconfiguration functionality is activated, a reconfiguration file is automatically downloaded from the controller to the I/O pack when the controller detects an I/O pack booting with a different configuration. The controller won't permit a reboot while an auto-reconfiguration is running; it won't be possible until the auto-reconfiguration is complete. While the I/O pack is auto-reconfiguring, no additional downloads can be started. Only diagnostics are carried out by Auto-Reconfiguration if an I/O pack is already active. Through the Component Editor in the ToolboxST application, auto-reconfiguration can be turned on or off. As a result, if necessary, the operator can manually adjust each pack or module. Terminal boards and controllers cannot be automatically reconfigured. Replacement of a terminal board necessitates manual reconfiguration of the I/O pack. Follow the steps in the Installation section to install or replace the I/O pack. The I/O pack boots up when power is connected, and the Auto-Reconfiguration procedure begins. In order to let the controller know it requires an IP address and configuration, it sends a signal. In order to decide whether a reconfiguration is required, the controller queries the I/O pack to locate any existing files. The controller then begins downloading the reconfiguration files and IP address. The I/O pack receives a signal from the controller when the download is finished. The I/O pack restarts do a self-diagnostic check and connect to the internet. Application Hardware The hardware for the emergency trip function is included on an internal application-specific circuit board in the I/O pack. The application board is shared by both the PPRA and PPRO I/O packs and connects the processor to the TREA terminal board. An option card header on the application board connects to a specific option card. Not all of the signal conditioning is utilized in the PPRA. Three more pulse rate input channels and support for the speed pulse rate repeater outputs are added via the option card linked to the internal header. Every board in the pack has electronic ID components that can be read when electricity is applied. The CPU may verify that the I/O pack is correctly matched to each terminal board connector using a similar part, and it can also transmit the board revision status to the system-level control. Connectors The terminal board is connected to the IO pack through a DC-62 pin connector on the underside. The primary IONET-EGD connection is an RJ45 Ethernet connector on the side of the pack labeled ENET1. The pack and terminal board are powered by a 28 V dc power connector on the side of the pack. Direct or Conditional Discrete Input Trip The TREA+WREA board's four isolated discrete contact input trip signals are supported by PPRA. While Contact # and L5Cont #_Trip are implemented in hardware logic, the direct/conditional determination is done in firmware. The firmware is not in the trip path when set up for direct trip. When set for conditional trip, the firmware assesses the communication health (represented by network keepalive) and inserts the conditional signal from signal space into the programmable logic. The default will allow any conditional trip in the event that controller connectivity is lost. Overspeed Trip On the three values that come out of the high-speed choice, it executes firmware Overspeed protection. While the three inputs are referred to as HP, IP, and LP in the PPRA specification, the three inputs are free to be used as needed in a system design.Module manufactured by General Electric as part of the Mark VI/VIe Series used in gas turbine sppedtronic control systems

IC600CB527M

DS3800XTFP1E1C

IS200DSPXH1DBC

IC693MDL640

IS220PDIAH1A 336A4940CSP1

IS200EGPAG1BCA

IC698CRE030

IC693CPU341

IC697CPX772

IS210BPPBH2BMD

IS200ERDDH1ABA

IS220PDOAH1A

DS200SDCIG1ABA

IC698CPE020

531X303MCPBBG1

IC687BEM731-AB

IC697CPM925

VMIVME-4140

DS200DMCBG1AED

IS200VCRCH1B

IC687RCM711

IS200TVIBH2BBB

IC670ALG310-JA

IC697CHS790

IS210SAMBH2AA

DS200SHVMG1AFE

IC660ELB912

IS220PPRFH1A

  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE Multilin 750/760 - Legacy Feeder Protection System
  • GE Fanuc Automation VMICPCI-7806 Specifications
  • GE VMIVME-7807 VME-7807RC* Intel® Pentium® M-Based VME SBC
  • GE Fanuc Automation VMIVME-7750 Specifications
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete
  • FOXBORO FBM208/b, Redundant with Readback, 0 to 20 mA I/O Module
  • FOXBORO FBM201e Analog Input (0 to 20 mA) Interface Modules
  • Foxboro DCS FBM206 Pulse Input Module
  • FOXBORO FBM216 HART® Communication Redundant Input Interface Module
  • FOXBORO Z-Module Control Processor 270 (ZCP270)
  • Foxboro DCS Compact FBM241/c/d, Redundant, Discrete I/O Modules
  • Foxboro FBM223 PROFIBUS-DP™ Communication Interface Module
  • Foxboro DCS FBM204. 0 to 20 mAI/OModule
  • Foxboro FBM239, Discrete 16DI/16DO Module
  • Foxboro FBM202 Thermocouple/mV Input Module
  • Foxboro E69F Current-to-Pneumatic Signal Converter
  • EMERSON M-series Intrinsically Safe I/O
  • Configuration for AMS 6500 Protection Monitors
  • EMERSON DeltaV™ M-series Traditional I/O
  • EMERSON DeltaV™ SQ Controller
  • AEROTECH Ndrive MP Hardware Manual
  • AEROTECH Ndrive HPe 10/20/30
  • AEROTECH Ndrive CP Hardware Manual
  • AEROTECH Ndrive Linear Series Digital Servo Amplifiers – Linear
  • AEROTECH Ndrive HP 10/20/30 P/N: EDU170
  • AEROTECH EDU176_Ndrive_HL
  • ADVANCEDMOTION CONTROLS Analog Servo Drive 120A10
  • GE JPAX-H
  • GE JPAX family
  • GE Industry Leading Experience
  • GE Ether-1000 Unit
  • GE Cyber Secured Service Unit
  • GE Lentronics E1MXe Multiplexer
  • GE TTMX Teleprotection Terminal
  • GE Lentronics T1 Multiplexer
  • GE Lentronics JungleMUX SONET Multiplexer
  • GE Lentronics E1MX Multiplexer
  • GE Lentronics TN1Ue SDH Multiplexer
  • GE Lentronics TN1U SDH Multiplexer
  • GE Gridcom DXC Family Access and Transmission Multiplexer
  • GE Advanced Network Management
  • GE Lentronics VistaNET Network Management System (NMS)
  • ABB System Controller Connect
  • Ethernet Module EI 803F ABB
  • ABB Ethernet Modules EI 802F
  • ABB Ethernet Modules EI 801F
  • ABB Power Supply SD 802F / SD 812F
  • ABB Power Supply SA 801F / SA 811F
  • ABB Basic Unit PM 802F /PM 803F
  • Control product - Soft starter PST/PSTB (Intelligent Type) ABB
  • ABB CP450 Installation and Operation Manual
  • ABB ompact 800 5.1 Product Catalog
  • ABB Panel 800 version 6
  • ABB Panel 800 Version 6- Panel Builder Version 6.0-1
  • ABB Control Panels CP405 Control Panels CP408
  • ABB PowerUP for medium voltage drives
  • GE MiCOM P40U Connect MiCOM P40 IEDs to PCs with USB ports
  • Reason RT431 GPS Precision-Time Clock GE
  • GE Reason RT430 GNSS Precision-Time Clocks
  • GE Reason H49 PRP/HSR Redbox Switch
  • GE Reason S20 Managed Ethernet Switches
  • GE Gridcom DIP.net
  • Central Control Station at Jaenschwalde mineLausitzer Braunkohle AG, Germany 2000
  • ABB Ability™ System 800xA Advant® Master S400 I/O to S800 I/O Evolution
  • ABB with Advant Controller 400 series
  • Advant™Automation with MOD 300™ Software
  • Bently 2300/20 and 2300/25 2300 Vibration Monitors
  • ABB NGC8206 Natural Gas Chromatograph Dual Unit
  • MOTOROLA MVME2400 TM VME Processor Modules
  • 5320 Series Foxboro DCS Control Network Ethernet Equipment
  • ExtremeSwitching™ 5420 Series
  • WOODWARD EGCP-3 Engine Generator Control Package LS (Load Sharing)
  • 5520 Series Universal Edge/Aggregation-Switch Platform
  • X440-G2 Series
  • EMERSON FloBoss™ S600 Flow Manager Specification Sheet
  • KONGSBERG RAIV400 Remote Analogue Input, Voltage
  • RMP420-Remote Multipurpose Input/Output Kongsberg
  • 610 serie ABB Feeder Protection REF610 Product Guide
  • Triconex 3351S2 Controller Features
  • HBRF Megamax – Emax2 Air Circuit Breaker ABB
  • ABB MEASUREMENT & ANALYTICS | DATA SHEET LS4000 Diode laser analyzer
  • Pressductor Pillowblock Load Cells Vertical Measuring PFCL 201 User manual
  • PARKER BFR5K Series
  • AC 900F controller ABB
  • Uniop ePAD05 and ePAD06 Technical description
  • Hitachi ABB Communication Unit 560CMR02
  • MOTOROLA MVME5500 Series VME Single-Board Computer
  • ABB Symphony Plus SD Series HPC800 controller
  • ABB AC800M Controller Hardware System
  • ABB AC800M PROFIBUS DP Installation System
  • ABB Freelance 800F AC800F Control systems
  • ABB Compact control system replaces PLC AC700F
  • abb Triguard SC300E 3BNP004720R101 TMR Safety Products
  • ABB Distributed busbar protection REB500
  • ABB Advant Controller 400 series
  • ABB MEASUREMENT & ANALYTICS | PRODUCT GUIDE
  • PACIFIC SCIENTIFIC PC800 PC832 PC830 Series Digital Brushless Servo Drive
  • PSS41S-3FDCTSAA Triconex DCS System Access Application Driver for Field Device Controller 280
  • Alstom controller of ICP232 029.359325
  • DEIF DU-2/MKIII Paralleling And Protection Unit General information
  • ABB 3ADT220134R0001 SDCS-COM-81 board 10MBd
  • ABB 3BHB006338R0002 UNS 0881a-P,V2:GDI PCB assembled *PB
  • ABB GRID BREAKER UNIT GBU72 3BHE055094R0002 / 3BHE031197R0001 / 3BHB030310R0001
  • ABB PCS6000 PRODUCT FAMLIY
  • ALSTOM SPU232.2 controller UNIT 029.366 817 029366817 SPU2322
  • ABB AO2000-LS25 Operator’s Manual 41/24-109 EN Rev. 3
  • Alstom EPSD-0603 series Circuit board redundancy architecture
  • ABB GJR2390200R1411 83SR04R1411 Control Module Universal
  • GE Digital Energy Hydran 201Ti Mark IV Essential DGA monitoring
  • Bender ISOMETER®IRDH275 IRDH275B
  • ABB 3BSE017235R1 PXAH 401 Operator Unit
  • HIMax-TECHNICALFACTS
  • Power supply CP-E 24/1.25 ABB
  • ABB NSIN0070-5 (IP23) 3ABD00024914
  • ABB 1VCR000993G0002 PCB card
  • ABB 2CSG524000R2021 TMD-T4/96 Temperature control unit
  • 3BHE014135R0011 UAD149A0011 ABB AC800PEC series
  • Alstom CT94360/01 signal regulator
  • MISP2-2W-T00-1000 GE Measurement & Control Solutions
  • DEIF AGC150 independent generator controller
  • DEIF AGC-4 10102264.10 Advanced generator set controller
  • ABB Plantguard Communications P8151B P8110B
  • ABB Plantguard series P8403 Digital input module
  • ABB 3BHE041343R0102 PCD530A102 Comm. Contr. & Meas. (CCM)
  • ABB P8431 TMR analog input module
  • ABB P129740-002 SIO Assembly,Smart Weight,Interface,Pre-
  • 3BHB007441P0001 LDSTA-01 ABB inverter control CPU driver board