KONG -Y
NameDescriptionContent
Location:
product
IS230TRLYH2E Manufacturer General Electric Country
❤ Add to collection

IS230TRLYH2E Manufacturer General Electric Country

IS230TRLYH2E
U.S.$115989.00
U.S.$47830.00
U.S.$45438.50
U.S.$44481.90
Weight:5.500KG
Quantity:
(Inventory: 3)
Buy now
Add to cart
Description
IS230TRLYH2E

Part Number IS230TRLYH2E Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI/VIe Function Module Availability In StockIS230TRLYH2E is a relay output board developed by GE. It is a part of Mark VIe control system. The board is equipped with a total of 12 plug-in magnetic relays. 

The board houses 12 plug-in magnetic relays, each designed to perform specific functions within the electrical system. Among the 12 relays, the first six relay circuits offer exceptional flexibility in configuration. These circuits can be configured through jumpers to provide either dry, Form-C contact outputs, or to drive external solenoids. This flexibility allows for customization based on the specific needs of the system or application. Features Relays: 12 Form A Relays: The relay configuration on the board consists of 12 form A relays, each designed to fulfill specific electrical functions within the system. 

This section provides an in-depth exploration of the characteristics and features associated with these relays. Power Distribution: The power distribution capability of these relays is tailored for 24V DC, presenting an optimal performance range for systems operating within this voltage specification. The relays are engineered to handle a maximum current load of 7A, ensuring efficient power distribution within the electrical network. Feedback Mechanism: In this specific relay setup, there is no explicitly mentioned feedback mechanism. The absence of a designated feedback system implies that these relays may not require or utilize specific feedback for their operation. 

This characteristic is important for understanding the relay's functionality and its role within the broader system. Relay Type: Isolated Contact Voltage Feedback: These relays employ an isolated contact voltage feedback system. This design choice means that the relays are configured to detect and respond to changes in voltage across isolated contacts. This isolated contact voltage feedback mechanism enhances precision and control over electrical signals, contributing to the reliability of the overall system. Redundancy Features: The relays on the board do not incorporate any redundancy features. 

The absence of redundancy implies that the operation of these relays relies solely on the primary relay components, without additional backup systems. Understanding the redundancy aspect is crucial for assessing the reliability and fault-tolerance of the relay configuration. 

Suppression: Solid-State Technology: The relays on this board utilize solid-state technology, a significant departure from traditional mechanical relays. This choice enhances the durability and reliability of the relays, making them well-suited for various applications. The relays are securely soldered onto the board, providing stability and minimizing the risk of malfunctions during operation. Terminals and Coil Drive Mechanism: Equipped with terminals, these relays support a coil drive mechanism. This mechanism can be configured for either voted TMR input or simplex input, offering flexibility in adapting to different system requirements. The inclusion of configurable coil drive mechanisms enhances the versatility and compatibility of the relays within diverse electrical setups. 24 Barrier Consideration: Notably, there is no 24 Barrier in this relay configuration. The absence of a 24 Barrier suggests the implementation of an alternative design or protection method within the system. Understanding this aspect is crucial for evaluating the safety and protective measures associated with the relay setup. 

 Jumpers (JP1 through JP12) Purpose: Jumpers JP1 through JP12 facilitate various functions and settings within the relay system. Contact Voltage Sensing: For applications requiring contact voltage sensing, jumpers can be inserted for selected relays. This enables the relays to detect voltage changes across their contacts, allowing for precise monitoring and control. Adjustment Process: To enable contact voltage sensing, carefully insert the jumpers into the designated slots corresponding to the desired relays. Ensure proper alignment and secure placement to guarantee optimal functionality. 

Application Flexibility: The availability of jumpers provides flexibility in configuring the relays to meet specific application requirements, enhancing versatility and adaptability. Fuses (FU1 through FU12) Purpose: Fuses FU1 through FU12 play a crucial role in protecting the relays and associated circuitry from electrical faults and overloads. Power Circuit Protection: For relays 1 through 6, two fuses should be placed in each power circuit supplying those relays. This ensures adequate protection and prevents damage to the relays in the event of power surges or excessive current flow. 

Installation Guidelines: Carefully install the fuses into the designated slots corresponding to the power circuits supplying relays 1 through 6. Verify the correct fuse rating and compatibility with the circuit requirements to ensure effective protection. Safety Considerations: Proper fuse selection and installation are essential for maintaining the integrity and safety of the relay system. Follow manufacturer guidelines and adhere to industry standards to mitigate risks and ensure reliable operation.I/O MODULE

  • alstom AMS42/84 5B Amplifier SystemAmplifier Technology at its Best.
  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE Multilin 750/760 - Legacy Feeder Protection System
  • GE Fanuc Automation VMICPCI-7806 Specifications
  • GE VMIVME-7807 VME-7807RC* Intel® Pentium® M-Based VME SBC
  • GE Fanuc Automation VMIVME-7750 Specifications
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete
  • FOXBORO FBM208/b, Redundant with Readback, 0 to 20 mA I/O Module
  • FOXBORO FBM201e Analog Input (0 to 20 mA) Interface Modules
  • Foxboro DCS FBM206 Pulse Input Module
  • FOXBORO FBM216 HART® Communication Redundant Input Interface Module
  • FOXBORO Z-Module Control Processor 270 (ZCP270)
  • Foxboro DCS Compact FBM241/c/d, Redundant, Discrete I/O Modules
  • Foxboro FBM223 PROFIBUS-DP™ Communication Interface Module
  • Foxboro DCS FBM204. 0 to 20 mAI/OModule
  • Foxboro FBM239, Discrete 16DI/16DO Module
  • Foxboro FBM202 Thermocouple/mV Input Module
  • Foxboro E69F Current-to-Pneumatic Signal Converter
  • EMERSON M-series Intrinsically Safe I/O
  • Configuration for AMS 6500 Protection Monitors
  • EMERSON DeltaV™ M-series Traditional I/O
  • EMERSON DeltaV™ SQ Controller
  • AEROTECH Ndrive MP Hardware Manual
  • AEROTECH Ndrive HPe 10/20/30
  • AEROTECH Ndrive CP Hardware Manual
  • AEROTECH Ndrive Linear Series Digital Servo Amplifiers – Linear
  • AEROTECH Ndrive HP 10/20/30 P/N: EDU170
  • AEROTECH EDU176_Ndrive_HL
  • ADVANCEDMOTION CONTROLS Analog Servo Drive 120A10
  • GE JPAX-H
  • GE JPAX family
  • GE Industry Leading Experience
  • GE Ether-1000 Unit
  • GE Cyber Secured Service Unit
  • GE Lentronics E1MXe Multiplexer
  • GE TTMX Teleprotection Terminal
  • GE Lentronics T1 Multiplexer
  • GE Lentronics JungleMUX SONET Multiplexer
  • GE Lentronics E1MX Multiplexer
  • GE Lentronics TN1Ue SDH Multiplexer
  • GE Lentronics TN1U SDH Multiplexer
  • GE Gridcom DXC Family Access and Transmission Multiplexer
  • GE Advanced Network Management
  • GE Lentronics VistaNET Network Management System (NMS)
  • ABB System Controller Connect
  • Ethernet Module EI 803F ABB
  • ABB Ethernet Modules EI 802F
  • ABB Ethernet Modules EI 801F
  • ABB Power Supply SD 802F / SD 812F
  • ABB Power Supply SA 801F / SA 811F
  • ABB Basic Unit PM 802F /PM 803F
  • Control product - Soft starter PST/PSTB (Intelligent Type) ABB
  • ABB CP450 Installation and Operation Manual
  • ABB ompact 800 5.1 Product Catalog
  • ABB Panel 800 version 6
  • ABB Panel 800 Version 6- Panel Builder Version 6.0-1
  • ABB Control Panels CP405 Control Panels CP408
  • ABB PowerUP for medium voltage drives
  • GE MiCOM P40U Connect MiCOM P40 IEDs to PCs with USB ports
  • Reason RT431 GPS Precision-Time Clock GE
  • GE Reason RT430 GNSS Precision-Time Clocks
  • GE Reason H49 PRP/HSR Redbox Switch
  • GE Reason S20 Managed Ethernet Switches
  • GE Gridcom DIP.net
  • Central Control Station at Jaenschwalde mineLausitzer Braunkohle AG, Germany 2000
  • ABB Ability™ System 800xA Advant® Master S400 I/O to S800 I/O Evolution
  • ABB with Advant Controller 400 series
  • Advant™Automation with MOD 300™ Software
  • Bently 2300/20 and 2300/25 2300 Vibration Monitors
  • ABB NGC8206 Natural Gas Chromatograph Dual Unit
  • MOTOROLA MVME2400 TM VME Processor Modules
  • 5320 Series Foxboro DCS Control Network Ethernet Equipment
  • ExtremeSwitching™ 5420 Series
  • WOODWARD EGCP-3 Engine Generator Control Package LS (Load Sharing)
  • 5520 Series Universal Edge/Aggregation-Switch Platform
  • X440-G2 Series
  • EMERSON FloBoss™ S600 Flow Manager Specification Sheet
  • KONGSBERG RAIV400 Remote Analogue Input, Voltage
  • RMP420-Remote Multipurpose Input/Output Kongsberg
  • 610 serie ABB Feeder Protection REF610 Product Guide
  • Triconex 3351S2 Controller Features
  • HBRF Megamax – Emax2 Air Circuit Breaker ABB
  • ABB MEASUREMENT & ANALYTICS | DATA SHEET LS4000 Diode laser analyzer
  • Pressductor Pillowblock Load Cells Vertical Measuring PFCL 201 User manual
  • PARKER BFR5K Series
  • AC 900F controller ABB
  • Uniop ePAD05 and ePAD06 Technical description
  • Hitachi ABB Communication Unit 560CMR02
  • MOTOROLA MVME5500 Series VME Single-Board Computer
  • ABB Symphony Plus SD Series HPC800 controller
  • ABB AC800M Controller Hardware System
  • ABB AC800M PROFIBUS DP Installation System
  • ABB Freelance 800F AC800F Control systems
  • ABB Compact control system replaces PLC AC700F
  • abb Triguard SC300E 3BNP004720R101 TMR Safety Products
  • ABB Distributed busbar protection REB500
  • ABB Advant Controller 400 series
  • ABB MEASUREMENT & ANALYTICS | PRODUCT GUIDE
  • PACIFIC SCIENTIFIC PC800 PC832 PC830 Series Digital Brushless Servo Drive
  • PSS41S-3FDCTSAA Triconex DCS System Access Application Driver for Field Device Controller 280
  • Alstom controller of ICP232 029.359325
  • DEIF DU-2/MKIII Paralleling And Protection Unit General information
  • ABB 3ADT220134R0001 SDCS-COM-81 board 10MBd
  • ABB 3BHB006338R0002 UNS 0881a-P,V2:GDI PCB assembled *PB
  • ABB GRID BREAKER UNIT GBU72 3BHE055094R0002 / 3BHE031197R0001 / 3BHB030310R0001
  • ABB PCS6000 PRODUCT FAMLIY
  • ALSTOM SPU232.2 controller UNIT 029.366 817 029366817 SPU2322
  • ABB AO2000-LS25 Operator’s Manual 41/24-109 EN Rev. 3
  • Alstom EPSD-0603 series Circuit board redundancy architecture
  • ABB GJR2390200R1411 83SR04R1411 Control Module Universal
  • GE Digital Energy Hydran 201Ti Mark IV Essential DGA monitoring
  • Bender ISOMETER®IRDH275 IRDH275B
  • ABB 3BSE017235R1 PXAH 401 Operator Unit
  • HIMax-TECHNICALFACTS
  • Power supply CP-E 24/1.25 ABB
  • ABB NSIN0070-5 (IP23) 3ABD00024914
  • ABB 1VCR000993G0002 PCB card
  • ABB 2CSG524000R2021 TMD-T4/96 Temperature control unit
  • 3BHE014135R0011 UAD149A0011 ABB AC800PEC series
  • Alstom CT94360/01 signal regulator
  • MISP2-2W-T00-1000 GE Measurement & Control Solutions
  • DEIF AGC150 independent generator controller
  • DEIF AGC-4 10102264.10 Advanced generator set controller
  • ABB Plantguard Communications P8151B P8110B
  • ABB Plantguard series P8403 Digital input module
  • ABB 3BHE041343R0102 PCD530A102 Comm. Contr. & Meas. (CCM)
  • ABB P8431 TMR analog input module
  • ABB P129740-002 SIO Assembly,Smart Weight,Interface,Pre-