KONG -Y
NameDescriptionContent
Location:

ABB H&B Publication 60-0.15 EN

From: | Author:kongjiang | Time :2024-12-24 | 452 Browse: | Share:

ABB H&B Publication

Certain industrial processes or applications necessitate controllers which satisfy safety engineering requirements. For instance, heat generating plant which is heated with fluid, gaseous or solid fuels requires controllers which meet the requirements of DIN 3440 [6]. This also holds for controllers used in heat-generating or heat-transfer plant which, irrespective of the type of heating energy, heat a thermal transfer medium such as water, steam, oil or air. Land-type boiler systems must use water-level controllers which meet the specifications of VdTÜV Data Sheet No. 100/1 [7] and thereby satisfy the requirements of the "Technical Guidelines for Steam Boilers" (TRD). Controllers with corresponding approval are also required for boiler plant with only limited or periodic monitoring. Controllers used on sea-going or inland waterway vessels, or in offshore facilities, have to satisfy the requirements of Germanischer Lloyds. Hartmann & Braun controllers satisfy these requirements.

Matching the controller to the controlled system Matching the control parameters Xp, Tn and Td to the control application and the controlled system is often referred to as optimization. However, optimization is a decision process which precedes parameterization. In the optimization phase a decision is made as to whether the controller should – adjust for a set point deviation as rapidly as possible, accepting that an overshoot may result – adjust for a set point deviation without any overshoot – compensate for disturbances in an optimal manner – reach the set point with the lowest power consumption – u. a. m. Once the target has been established, the control parameters can be determined and set on the controller. 3.1 Manual determination and setting of control parameters The parameters Xp, Tn and Td are established for controllers by – trial and error – experience – evaluation, for instance of transfer functions using a rule of thumb or – the use of mathematical methods. PC programmes are used here. These approaches are in general very time consuming and often too imprecise to achieve optimal results at the first attempt. Consequently, there has long been a need for controllers which find their own parameters and adapt themselves. 3.2 Adaptive controllers The term "adaptive controller" is inadequate to describe the function of such a controller. VDE/VDI Guideline 3685 gives more details on the classification of the various options:

"An adaptive control system is one in which characteristics which can be influenced are automatically set to variable or unknown process characteristics so as to elicit an improvement. The terms self-setting, self-adapting and self-optimizing in the sense of this definition are all synonyms for the term "adaptive" [8]. Such an adaptive system is described by reference to Fig. 12: "Identification in an adaptive control system serves to establish the characteristics of a system or part system." "In the decision process, that information received about the identification is compared to th

Realization in H & B controllers Start-up adaptation is realized in H&B controllers under the designation self-parameterization. This simplifies and speeds up the start-up process and leads to better control performance than the usual methods in which exact measurements are often omitted to save time and the parameters are only approximated. Control of the parameters through the set point, the controlled variable or other measured signals is a simple matter with Hartmann & Braun controllers. Since no general approach is possible for such tasks, a special configuration has to be drawn up for such applications by either Hartmann & Braun or the operator. Self-parameterization can be a valuable aid to establishing various parameters for different loading conditions. 

Two interfaces, of equal functional value, are available for different applications. A configuration interface which can be accessed from the front allows the functions parameterization, configuration and feedback documentation to be carried out. The controller itself is generally off line whilst they are being carried out. The computers used for this are mostly portable so that they can be used at different sites. They are connected to the controller via an adapter cable. The rear interface allows the control of one or more units via a bus. Although this interface can also be used for configuration and parameterization, the bus is best used for operational (on-line) functions. For these tasks the computers are generally stationary, with a fixed connection to the controller.

Computer applications Hartmann & Braun offers complete, powerful software programmes for the functions operation and monitoring as well as process visualization, parameterization, configuration and feedback documentation. The applications set point control and direct digital control are in most cases so closely bound to the controlled system that no generally-valid programmes can be written for them. The interfaces, however, are documented such that coupling programmes can be written

  • GE 04220HL21204A IPC Control Module
  • ABB 3BSE000860R1 SB510 Backup Power
  • ABB 0504994880 Controller unit
  • ABB PFSA140 3BSE006503R1 Industrial robot Supply Unit
  • ABB 5SHX1445H0002 3BHL000387P0101 POWER IGCT unit
  • ABB 128877-103 CABLE, SP1200 IR DET.
  • ABB CI853K01 and TP853 RS-232C Interface
  • ABB REM610 MOTOR PROTECTION RELAY REM610C11HCNR
  • ABB IGBT 5SDF0860H0003 5SDF1045H0002 unit
  • ABB TC512V1 3BSE018059R1 RS485 Twisted pair Modem
  • ABB DO880 S800HI 3BSE028602R1 Digital Output
  • ABB GDD360C 3BHE047217R0101 Advanced Automation Solution
  • ABB UCD240A101 3BHE022287R0101 controller unit
  • ABB AC800F Ethernet Module AM811F 3BDH000050R1​
  • ABB AC800F Module AM801F 3BDH000040R1
  • ABB SD802F 3BDH000012R1 POWER UNIT
  • ABB operation panel PM820-2 3BSE010798R1 system module
  • ABB operation panel PM820-1 3BSE010797R1 system module
  • ABB CI857K01 3BSE018144R1 INSUM Ethernet Interface
  • ABB PM861/PM861AK01 and TP830 Processor Unit
  • ABB SA811F 3BDH000013R1 Power Supply 115/230 VAC
  • ABB 751010R0815 1VC1T0374A00R unit
  • 5SGY35L4510 Robot high voltage board Brand ABB
  • ABB HVC-02B 3HNA024966-00103 Robot high voltage board Brand HVC02B
  • ABB SLMG99 UNIT
  • ABB 086406-002 PWA.SIOC. SMART I/O CALIP 086407-502
  • ABB UCD208A101 3BHE020018R0101 UNIT
  • ABB UAD154A 3BHE026866R0101 UNIT
  • ABB GCD207B101 3BHE024642R0101 controller card
  • ABB TB820V2 S800 Modulebus module 3BSE013208R1
  • ABB UDD406A 3BHE041465P201 Control unit
  • ABB PPD113B01-10-150000 3BHE023784R1023 unit CPU module
  • ABB 5SHY35L4512 3BHE014105R0001 5SXE08-0166 IGCT unit
  • ABB Backplane Uni Type3+housing FETD685A1156U01
  • ABB 07DC91C GJR5251400R0202 Digital input and output Unit
  • ABB UNS2881b-P,V1 3BHE009319R0001 UNS2881BPV1 Inspirational system
  • ABB UNS2880B-P,V2 3BHE014967R0002 UNS2880B-PV1 Inspirational system
  • ABB CI810B 3BSE020520R1 AF 100 Fieldbus Comm. Interface
  • ABB FM9925a-E HIEE451116R0001 Interface Module Card
  • Bently 2300/25 0002 Vibration Monitors
  • Bently 2300/20 0002 Vibration Monitors
  • ALSTOM VP327 020-23EU 75X-6025-29 Control mainboard VP32702
  • ABB NE802 3BSE080237R1 Industrial switch
  • ABB 3BSE080207R1 NE810 Industrial switch
  • MOTOROLA MVME2400 VME Processor Modules
  • ABB 3BHE021481R0001 intelligent current distr UNIT
  • MOTOROLA MVME2434 VME Processor Modules
  • METSO PDP606 CONTROLLER unit
  • WOODWARD PG-PL-29 Governor 8577-613
  • GE IS230TNRLH1B Combination module kit Mark VI
  • GE IS230TNAIH2C Combination module kit Mark VI
  • ABB 3ASC25H204 DAPU 100 Control board I/O
  • ABB 3BHE014070R0101 V PPC905AE101 CCB-2 COMPLETE
  • ABB PRC3BSE050198R1 PM866K01 Processor Unit
  • Kongsberg RAIV400 600370 Remote Analogue Input
  • ABB SPSED01 event sequence module
  • ABB HIEE300900R0001 PP C322 BE01 PSR-2 processor + fieldbus
  • ABB 3BHE003604R0102 UFC765AE102 circuit board
  • ABB ACU-01B 3HNA024871-001 Robot controller
  • ABB XVC770BE101 3BHE021083R0101 circuit board
  • ABB UAC383AE01 HIEE300890R0001 Module
  • ABB REF610C11LCNP FEEDER PROTECTION RELAY
  • ABB MT91 Operator Panel MT-91-ARC FP A
  • ABB XUD194 XUD194A 3BHC018137R0001 module base
  • ABB 5SHY4045L0001 3BHB018162 3BHE009681R0101 GVC750BE101
  • ABB G2000A5.7ST graphical operation panel (HMI)
  • ABB 3BHE017628R0002 PPD115A02 SG579989013
  • ABB Motor Protection and Control REM615 Product Guide
  • ABB PFTL101B 3BSE004185R1 2.0KN sensor
  • ABB PFCL201CE 50KN 3BSX802939-108 sensor
  • ABB 3BHE023784R2530 PPD113B01-25-111000 AC 800PEC
  • ABB 3BHE046836R0101 GF D563 A101 LCI Conv. Interface (LIN)
  • ABB PPD512A10-454000 3BHE040375R103E PPD512 丨AC800PEC
  • ABB PPD117A3011 3BHE030410R3011 excitation controller
  • ABB AC800M PM891 3BSE053240R1 Processor module
  • ABB PP882 3BSE069275R1 HMI operating touch screen
  • ABB HIEE205014R0001 UNC 4673A,V1 Analog Measuring Card
  • ABB 128057-204 ASPC ASSY, W/-004
  • ABB 3BHB006716R0277 SYN 5302a-Z,V277: Auto dual channel Syn
  • ABB PFSK 163 V3 3BSE016323R3 Module
  • ABB 3BUS208796-001 HKQCS PARTS ON LINE
  • ABB 2VAA008425R1 RMU610 Base for redundant cRBX01
  • ABB 3BSE018876R1 PFSK 151 DSP-Signal processing
  • Westinghouse 1C31129G03 1C31129G01, 1B30035H01 Ovation analog output module
  • Pacific scientific PC833-001-N-BA communication module
  • HONEYWELL 30733159-002 supplied by Honeywell
  • BENTLY 3500/94M 184826-01 VGA Display Monitor
  • BENTLY 1900/65A 172323-01General Purpose Equipment
  • Bently Nevada 9200-01-01-10-00 Speed Sensor
  • Bently Nevada 330104-00-05-10-02-00 Proximity detector
  • Bently Nevada 330901-05-32-05-02-00 3300 XL NSv proximity sensor
  • Bently Nevada ASSY78462-01U I/O module recording terminal
  • 330901-00-90-05-02-00 Bently Nevada3300 NSv Proximity Probes
  • 330180-X1-CN Bently Nevada Proximity sensor
  • Bently Nevada 3500/92 136188-01 RS232 communication gateway module
  • General Electric Multilin345-E-P1-G1-L-E-E-N-Sn-D-N Transformer Protection
  • ALSTOM MV507A2D1A frequency driver Alspa MV500
  • Carrier CEPL130201-02 6400 General Purpose HVAC Comfort Controller
  • Carrier Transicold dual-view temperature display 76-50202-01/ 76-60876-01
  • Carrier CEPL131258-01-R HVAC system touch screen
  • Carrier Ces0110074-01 circuit control board
  • Carrier handheld controller CEPL130435-01 HK50AA033
  • Carrier-A12-00703-04 3922M1042473 stepper valve module
  • CARRIER 00PSG000469000A CEPL 130602-02-R CEBD 430602-07-RA
  • Hirschmann MM20-M4M4T1T1SBH Industrial Ethernet module
  • IC752SPL011 GE control panel
  • GE ALSTOM IR139-1丨063022350丨80801419丨B0037299control card
  • ALSTOM UT150-1 control module
  • ALSTOM AL132丨AL132A Control Card
  • ABB 2CTB802342R0000 surge protector
  • ABB PM118-7BPM1118 MAGNET (NEO) .50LG
  • Tektronix TDP0500 high pressure differential probe
  • Carrier CEPL130403-02-R Microprocessor Board CEBD430403-11-RC 32GB500382EE
  • BENTLY 106M1079-01-Y Power Module Original
  • ABB system module DLM02 original DO610,DO620
  • 1394-SJT22-A servo driver Allen-Bradley servo equipment
  • MOTOROLA SGLF4136FA PLC control system
  • B&R ECPE84-1B Modulus Input Module Quality Service
  • Foxboro FBM213 communication module supply
  • S-093H 3BHB030478R0309 ABB high voltage frequency conversion rack
  • ABB S-123H 3BHB030479R0512 rack
  • ABB 3BHL000406P0103 VFW 30/265Processor unit
  • ALSTOM V4561983-0100 EPIC II ESP controller
  • MOOG G761-3004B5 H38JOGM5VPH Servovalve
  • 3500 BentlyNevada 3500/05-02-01-00-00-00 System rack
  • 3500/05-01-02-00-00-01 Bently Nevada 3500/05 System Rack
  • 3500/05-01-01-00-00-00 BentlyNevada System Rack
  • BentlyNevada 3500/05-02-01-01 System Rack