There is one command page for each thruster, in addition to one system overview page and one alarm page. The overview page shows the most essential information for all thrusters, but to activate functions or to view all available information for a thruster, the particular thrusters' page must be selected. The graphical design is based on the following principles:
• All functions pages are only one click away
• Large and simple buttons which are easy to read.
• Same design theme for all clickable objects.
• To avoid unintentional activation of functions, all function activation buttons require press on the accept button to proceed
Emergency stop and dimmer panel (optional)
The emergency stop is used to shut down the thrusters immediately. There is one button per thruster unit. The wheel (1) is used for dimming the background light on the indicators situated on the same control station. The dimmer may be delivered in a separate panel, if the emergency stop buttons are not part of the delivery scope.
Indicators
The indicators give feedback on various data and can be found on the bridge and in the engine control room. There are three main types of indicators:
• Azimuth indicator • RPM indicator
• Pitch indicator In addition a bridge order indicator may be delivered on some vessels.
Viewcon
Network cabinet MAX PITCH ASTERN AHEAD BOW AZIMUTH THRUSTER 1 RPM MIN MAX RPM MIN MAX STBD MAIN PROPULSION PITCH ASTERN AHEAD RPM MIN MAX The network cabinet(s) contains several switches. The network cabinet(s) connects the panel PCs and the controller cabinets. Network Operator stations and electronic units are linked together in an Ethernet network. The network is single and may contain several separate switches. (CAN bus is the internal communication between levers, I/O modules and Marine Controller.)
Controller cabinet
Usually located on bridge or in instrument room. This cabinet distributes signals to and from the bridge and ECR. It controls all the signals from the Helicon X3 and send them to the I/O cabinet. There is one controller cabinet per propeller/thruster. Communicates with the I/O cabinet located in the thruster room.
Rolls-Royce Marine Controller (Normal) 2. Rolls-Royce Marine Controller (Backup) 3. I/O modules 4. Power distribution 5. Network switches and terminals 6. Signal isolation amplifiers (optional) 7. Power Distribution 8. Main power supply (AC) / fuses 9. Backup power supply (DC) / fuses
I/O Cabinet
The I/O cabinet is often located in the thruster room near sensors and actuators. This cabinet distributes signals to the different propulsion/thruster units. There is one I/O unit per propeller/thruster. The I/O cabinet sends signals to the actuators on the propellers/thrusters and receives signals from the sensors. There is CAN bus communication between each I/O and controller cabinet.
Functions
Tunnel Thruster Control Functions The control functions included in the Tunnel Thruster Control system: • Pitch control • Command transfer Main Propulsion Azimuth Control Functions The control functions included in the Main Propulsion Azimuth Control system:
• RPM control
• Azimuth control
• Command transfer
Pitch Control
The function of the pitch controller is to move the propeller blades in accordance to the control lever order. The actuator unit represents the interface between the remote control and the main servo system, which performs the actual positioning of the blades.
Normal Control
The output from the pitch controller is computed on the basis of the input signals from pitch lever and the actuator position feedback. Lever and feedback signals are scaled and checked against adjustable limits, with corresponding alarm for exceeding the normal range. The levers have one set of adjustments (minimum, zero and maximum) for each manoeuvre station. Multiple sets of feedback adjustments (minimum, zero and maximum) are available for various engine power take-outs. In combined mode the lever signal is modified in a Combinator program, see chapter Pitch and RPM Combinatory (combined Control).
Backup Control The Backup Control system consists of closed loop control identical to the Normal Control system. The Backup Control is a separate system, and is independent of the Normal Control system. A system failure in the Normal Control system will automatically switch to and engage the Backup Control. Lever order signals and feedback are monitored and verified against adjustable alarm limits. If the signals exceed the limits this will release an alarm to the alarm plant and both visual and audible system failure alarm will be actuated at the manoeuvre stations. Backup Control Operation If a failure occurs on important parts of the Normal Control for the Pitch, Azimuth or RPM Control function, the control will automatically be switched over to the Backup Control system. A system failure audible and visible alarm will be activated on each of the control panels. The thruster control will continue to follow the lever in command and transfer is done by using the common in command buttons. The command can be transferred between all bridge position and the bridge control levers will continue to work as in normal control. A failure that occurs on important parts of the Backup Control for the Pitch, Azimuth or RPM Control function will not affect the Normal Control system. If a system failure occurs on the Backup Control an audible and visible alarm will be activated on each of the control panels. Backup Control Limitations The Backup Control system has only interface to the control levers. The Backup Control system does not have interface to External Control systems like Dynamic positioning systems, Joysticks or Autopilots.
Add: Building F05, High-tech Software Park, Xiamen City, Fujian Province
Tel: 0592-5211302
Mobile: 17750019513 (WhatsApp)
Email: yy4291644@gmail.com
ivy@kongjiangauto.com
Website: https://www.abb-sis.com