KONG -Y
NameDescriptionContent
Location:

Rolls-Royce Helicon X3 P&T Control System

From: | Author:kongjiang | Time :2025-03-05 | 2481 Browse: | Share:

Pitch Indication The Pitch Indication system is independent of the Normal Pitch Control system by means of separate transmitters and electronic circuits. The pitch indicators are connected in series and are driven from the Backup Control system. Pitch Order Scaling The system may need to reduce the pitch order for different reasons. The pitch reduction can either be activated from a digital or anlogue input signal. To reserve engine power to heavy consumers as alternators, fire pumps, etc., it may be necessary to reduce the available propeller output power. This is normally done by means of a fixed propeller pitch reduction. If the drive motor is a diesel engine the system is prepared to handle a fuel limiter contact, from the RPM governor (i.e. high scavange air pressure). If the contact is closed the pitch order will stop increasing to a higher value, only decrease of pitch order against zero is possible. For azimuth thrusters, a pitch reduction will be activated if the azimuth order is changed faster then the thruster azimuth servo can follow. Thruster Azimuth Control The azimuth control function is to obtain the correct thruster azimuth position in accordance to the control lever order. Valve controlled hydraulic motors or frequency controlled electro motors perform the positioning of the thruster azimuth. Detailed information regarding the hydraulic system or motor data is available in the Thruster Instruction manual.

Normal Control The azimuth controller computes the thruster position and order on the basis of signals from the thruster feedback and control levers. A two-wiper linear potentiometer provides two outputs with 90 degrees of phase shift named cosine and sine phase respectively. The lever order signals and feedback signals are monitored and verified against alarm limits. If the signals exceed the limits this will release an alarm to the alarm plant with a visual and audible system failure alarm on the manoeuvre stations. Backup Control The Backup Control system consists of closed loop control identical to the normal control system. The Backup Control is a separate system, and is independent of the Normal Control system. A system failure in the Normal Control system will

automatically switch to and engage the Backup Control. Lever order signals and feedback are monitored and verified against adjustable alarm limits. If the signals exceed the limits this will release an alarm to the alarm plant with a visual and audible system failure alarm on the manoeuvre stations.

Backup Control Operation If a failure occurs on important parts of the Normal control for the Pitch/Azimuth/RPM control function, the control will automatically be switched over to the backup control system. A system failure audible and visible alarm will be activated on each of the control panels. The thruster control will continue to follow the lever in command, and command transfer is done by using the common in command buttons. The command can be transferred between all bridge position and the bridge control levers will continue to work as in Normal Control. A failure that occurs on important parts of the Backup control for the Pitch/Azimuth/ RPM control function, will not affect the Normal control system. If a system failure occurs on the Backup Control an audible and visible alarm will be activated on each of the control panels

Backup Control Limitations The backup control system has only interface to the control levers. The backup control system does not have interface to external control systems like Dynpos, Joystick or Autopilot.

Local Control Local control is used if both the normal control and the backup control fail to operate the thruster azimuth. The thruster azimuth can be operated locally on the actuator unit. The Control System must first be disconnected from the actuator unit. This can be done by means of the Local Control switch mounted in front of the Actuator Interface Unit, or by disconnecting the plug from the actuator unit. If frequency converter used, operate service switch inside converter cabinet. The Thruster Instruction Manual will give more details for Local Control operation. Azimuth Indication The azimuth indication system independent of the normal control system by means of separate transmitters and electronic circuits. The Azimuth indicators are connected in series, and are driven from the Backup Control system.

RPM Control The RPM Control function system controls the speed signal to the frequency converter for electrical drives or the engine governor for diesel or gas engines. RPM Control Electric Drive Motor The RPM Control system includes selection of different operational modes: 

 • Separate Mode 

 • Combined Mode Selection between modes is possible by means of push buttons. RPM Control can be managed from engine control room only or from additional control panels. External RPM Control External RPM order signals from system as DP/Joystick/Auxiliary systems can be connected to the rpm controller. The external rpm signal are checked against adjustable preset limits. Any error conditions on the rpm input signal will initiate a warning to the alarm plant and an error message will be displayed on the control panel. RPM Order Output The output signal from the controller is scaled to meet the actuator signal range from idle to full rpm, and then fed to external governor, IP converter or frequency converter. The output will follow a linear curve between idle and full rpm order. The RPM output rate of change is adjustable and can be adapted to the engine/frequency converter reversing speed from idle to full rpm (increasing order) and vice versa (decreasing order). Propeller/Shaft RPM Indication The propeller/shaft RPM indicators are connected in series and are driven from the Backup Control system. Command Transfer The term Command transfer is used to describe the procedure performed when the control is transferred between manoeuvre stations without acceptance on either of the stations. This is normally the procedure between wheelhouse (bridge) stations. 

  • UniOP eTOP308 ETOP308U301 HMI Panel
  • UniOP ePALM10-0061 Handheld Robot Trainer
  • UniOP CP01R-04 CP05R-04 and CP01F-02
  • Uniop MD02R-04 - MD02R-04-0045 Industrial PLC Workstation
  • Uniop Cp02r-04-0021 Operating Interface
  • UniOP ECT-16-0045 High-Performance Color Touchscreen HMI
  • UniOP ERT-16 - Industrial PLC Workstation
  • UniOP ePAD04-0046 Compact Industrial Interface
  • UniOP BKDR-16 High-Reliability Monochrome Operator Interface
  • UniOP MKDR-04-004 Control Unit Panel
  • UniOP eTOP515 Series 500 HMI
  • Woodward 9907-1199 Advanced CPC-II Current-to-Pressure Converter
  • Woodward 8200-1300 High-Precision 505D Steam Turbine Controller
  • ABB PFSK130 3BSE002616R1 Core Signal Conditioning Unit
  • ABB PFSK165 3BSE027778R1 VP74201-933CW07 Signal Processing and Communication Unit
  • ABB PFSK164 3BSE021180R1 Tension sensor module and processing board
  • ABB 3BSE006505R1 PFSK142 Control board
  • ABB PFSK160A 3BSE009514R1 Regulated High-Capacity 24V DC
  • ABB PFSK162 3BSE015088R1 Signal Conditioning and Processing Board
  • ABB PFSK152 3BSE018877R1 Signal concentrator board
  • ABB PFSK151 3BSE018876R1 High-performance signal processing unit
  • ALSTOM PIB1201A 3BEC0067 Power Interface Board (PIB)
  • ALSTOM PIB310 3BHB0190 Adapter Module / Printed Circuit Board (PCB)
  • ALSTOM PIB102A 3BEB0180 Communication Card / PCB Module
  • ALSTOM BGTR8HE 24491276A1004 High-Frequency Power Controller / Rack Module
  • ALSTOM LC105A-1 Digital Discrete Output (Relay)
  • ALSTOM IR139-1 High-Efficiency Inverter / Control Board
  • ALSTOM AM164 Analog Output / Remote I/O
  • ALSTOM LE109A-1 Power System Control and Monitoring Module
  • ALSTOM UT150-1 PID temperature controller / process control board
  • ALSTOM AL132 AL132A STO0982E01 Control Motherboard / CPU Card
  • ALSTOM AS111-1 Analog Output (AO) Module
  • WATLOW AH116-2 Servo Drive / Control Module
  • WATLOW V4555724-0100 Electromechanical Contactor /Power Switch
  • Alstom KCEU142 Digital Protection Relay
  • ALSTOM MMLG01 Test block
  • WATLOW 999D,999A Digital/Analog Dual-Channel Base Unit
  • WATLOW 998D 998A Digital/Analog Dual-Channel Base Unit
  • WATLOW 999D-11FF-AARG Dual-channel digital unit with universal process outputs
  • WATLOW Wattlo 998D-22KK-ARRG is a high-performance dual-channel digital controller
  • WATLOW 996A Single-loop controller
  • WATLOW 996D-11CC-CUGR Single-loop digital controller
  • WATLOW 996D Single-Channel Digital Temperature/Process Controller
  • WATLOW 997D Digital Dual-Channel Base Unit
  • WATLOW 997A Analog Dual-Channel Variant
  • WATLOW DAC / SDAC Digital-to-Analog / Serial-to-Analog Modules
  • WATLOW MLS300-OIT Operator Interface Terminal (Keypad/Display),Discontinued
  • WATLOW CIM300 Communication Interface Module (EIA-232/485),Discontinued
  • WATLOW MLS300-CIM Control Interface Module
  • WATLOW MLS300-AIM,Analog Input Module (16-channel expansion),Discontinued
  • WATLOW MLS300-PM Processor Module (Central CPU),Discontinued
  • Watlow MLS332 32-Loop Processor Base Unit,Discontinued
  • Watlow MLS316 Multi-loop thermal controller
  • Watlow CLS208 C10000CP high-performance, 8-loop PID temperature controller
  • Watlow CAS 16CLS/CAS Multi-loop temperature controller
  • ABB CP555 1SBP260179R1001 Product Overview
  • Watlow MLS300 Multi-Loop Control System
  • Watlow 997D-11CC-JURG SERIES 997 Vertical Limit Control
  • Watlow CLS216 Multi-Loop PID Temperature Controller
  • Watlow NLS300-CIM316 Multi-Loop Control Interface Module
  • Watlow PPC-TB50 (30280-00) Precision Power Controller
  • ABB 3BSE014227R1 RF533 Central Unit
  • WOODWARD 5448-890 SPM-D10 Series One Breaker Synchronizer
  • FOXBORO 43AP-FA42D/PB-AA 43AP Pneumatic Indicating Controllers
  • Stucke Elektronik SYMAP®G generator protection
  • Stucke Elektronik SYMAP®F feeder protection
  • Stucke Elektronik SYMAP®ECG engine control and generator protection
  • Stucke Elektronik SYMAP®EC Engine Control
  • Stucke Elektronik SYMAP®ARC Arc protection system
  • Stucke Elektronik SYMAP®R Digital protection system
  • Stucke Elektronik SYMAP® Compact Digital protection and control equipment
  • LEYBELOD SV40 BI Single-stage, oil-sealed rotary vane pump
  • LEYBELOD TURBOVAC 361 (C) Suspension turbomolecular pump
  • LAND M2300/1100C-V Industrial Control Module
  • LAMBDA LZS-1500-3 Single Output Industrial Power Supplies
  • LAMBDA LZS-A1500-3-001 POWER SUPPLY
  • LAMBDA HWS1500-24 Power supply
  • Kongsberg K-Chief Control Room Panel (CRP) 603525
  • Kongsberg MSI-12 Input/Output Module 339368
  • Kongsberg dPSC Dual Process Segment Controller Module 8100183
  • HHirschmann Modular OpenRail Fast Ethernet switch 8-24 ports MS20-1600SAAEHH08.0
  • Hirschmann MM20-Z6Z6Z6Z6SAHH ETHERNET / Fast-ETHERNET Media Modules
  • Hirschmann MM2-2FXM3/2TX1 ETHERNET / Fast-ETHERNET Media Modules
  • Hirschmann Industrial ETHERNET Switch MICE MS20/MS30
  • Hirschmann MACH102-24TP-FR Gigabit Ethernet industrial workgroup switch
  • Hirschmann MM2-4TX1 MICE switch medium module
  • Hirschmann MICE switch medium module MM2-2FXS2
  • ABB AFS670 19" Ruggedized Switch AFS670-EREEDDDSSEEEEEEEPZYX05.1.0
  • NI Controller for VXI VXIPC-871B
  • GE VMIVME-1150 Serial Communications Controller
  • GE Hydran M2-X Enhanced Monitoring with Extended Sensor Life
  • GE IC660BBD022 I/O module
  • GE Digital Energy D20 Analog Input Module
  • Foxboro FBM I/O cards PBCO-D8-009
  • GE SR750-P5-G5-S5-HI-A20-R-E Multilin Relay
  • ABB 3BSE019050R1000 PFTL 301E 1,0kN, Load cell
  • Foxboro DNBT P0971WV Dual-node bus module of I/A series
  • EPRO MMS6210 Dual-channel axial displacement measurement module
  • EMERSON PMCspan PMC Expansion Mezzanine
  • EMERSON KJ3242X1-BK1 12P4711X042 S-Series H1 Card
  • EMERSON KJ4006X1-BD1 Interface Terminal Block
  • EMERSON KJ4001X1-CK1 40-Pin Mass Termination Block
  • ABB UCD224A103 Industrial controller module
  • ABB ARCOL 0339 Solid-state motor controller
  • ABB UFC718AE01 HIEE300936R0101 Main Circuit Interface Board
  • Abaco VME-REPEATL-485 VMEBus Repeaters
  • Abaco VME-4900 Digital-to Synchro/Resolver Board
  • Abaco VME-4911 digital converter board
  • Abaco XM-664-80 Transition module with rear I/O access to VIPC664
  • Abaco TPMCC 6U VME triple PMC carrier for use with the V5C SBC
  • Abaco VIPC8243 is an intelligent 6U VME carrier board
  • Abaco DCPMC Conduction-cooled or Rugged PMC Carrier
  • Abaco CP237 is a 6U CompactPCI Card
  • Abaco VME-3413 32-Channel Signal Conditioning Board
  • Abaco VME-3125 VME Analog I/O Input Boards
  • Alstom GE SPU232.2. 029.366.817 Single Processor Unit SPU2322
  • ALSTOM COP232.2 VME A32/D32, 029.232 446 controller unit
  • ICS TRIPLEX T8111C​ Trusted TMR Processor
  • VMIC VMIVME-7740 VME Single Board Compute 750
  • foxboro FBM232 Field Device System Integrator Module P0926GW
  • GE 04220HL21204A IPC Control Module
  • ABB 3BSE000860R1 SB510 Backup Power
  • ABB 0504994880 Controller unit
  • ABB PFSA140 3BSE006503R1 Industrial robot Supply Unit
  • ABB 5SHX1445H0002 3BHL000387P0101 POWER IGCT unit
  • ABB 128877-103 CABLE, SP1200 IR DET.
  • ABB CI853K01 and TP853 RS-232C Interface
  • ABB REM610 MOTOR PROTECTION RELAY REM610C11HCNR