KONG -Y
NameDescriptionContent
Location:

Ovation MVME6100 Single Board Computer Emerson

From: | Author:kongjiang | Time :2025-02-20 | 63 Browse: | Share:

Jumpers/switches are used to control those options that are not software configurable. These jumper settings are described further on in this section. If you are resetting the board jumpers from their default settings, it is important to verify that all settings are reset properly. Figure 1-1 illustrates the placement of the jumpers, headers, connectors, switches, and various other components on the MVME6100. There are several manually configurable headers on the MVME6100 and their settings are shown in Table 1-2. Each header’s default setting is enclosed in brackets. For pin assignments on the MVME6100, refer to Chapter 5, Pin Assignments. Items in brackets are factory default settings

The MVME6100 is factory tested and shipped with the configuration described in the following sections.

SCON Header (J7)

A 3-pin planar header allows the choice for auto/enable/disable SCON VME configuration. A jumper installed across pins 1 and 2 configures for SCON always enabled. A jumper installed across pins 2 and 3 configures for SCON disabled. No jumper installed configures for auto SCON.

PMC/IPMC Selection Headers (J10, J15 — J18, J25 — J28)

Nine 3-pin planar headers are for PMC/IPMC mode I/O selection for PMC slot 1. These nine headers can also be combined into one single header block where a block shunt can be used as a jumper

A jumper installed across pins 1 and 2 on all nine headers selects PMC1 for PMC I/O mode. A jumper across pins 2 and 3 on all nine headers selects IPMC I/O mode

PMC I/O Voltage Configuration

The onboard PMC sites may be configured to support 3.3V or 5.0V I/O PMC modules. To support 3.3V or 5.0V I/O PMC modules, both PMC sites on the MVME6100 have I/O keying pins. One pin must be installed in each PMC site and both PMC sites must have their keying pins configured he same way. If both keying pins are not in the same location or if the keying pins are not installed, the PMC sites will not function. Note that setting the PMC I/O voltage to 5.0V forces the PMC sites to operate in PCI mode instead of PCI-X mode. The VIO keying pins are the silver colored pins located either in the middle of each set of four PMC site connectors or just in front of those connectors. They serve two functions on the MVME6100: both as jumpers to select the PCIbus VIO signaling voltage for the PMC sites, and as keys to permit mounting of PMC cards that are compatible with that VIO signaling voltage

(or to exclude incompatible PMC cards). In the default position in the middle of the four PMC site connectors, the signaling voltage for the PMC sites is set to 5.0V. When the keying pins are moved to the alternate location in front of their set of four PMC connectors, the signaling voltage for the PMC sites is set for 3.3V. 1.4.4 The keying pins for both PMC sites must be set to the same signaling voltage. Note also that the signaling voltage has an effect on the PCI bus clock speed for the PMC sites. At 5.0V signaling, the PCI bus clock speed is limited to 33 MHz, whereas 3.3V signaling voltage supports conventional PCIbus clock speeds of 33 or 66 MHz, and PCIx clock speeds of 66 or 100MHz. A PMC card that requires 5.0V VIO only signaling has a hole in the middle of its four PMC connectors, such that it fits over the MVME6100's keying pin in that location. With the MVME6100's keying pin in the 3.3V location, that PMC card would be physically unable to be mounted. Similarly, a PMC card that requires 3.3V VIO-only signaling has its keying hole located just to the front of its four PMC connectors, and will only fit to the MVME6100 when the keying pin is located there. However, most modern PMC cards are universal with respect to the VIO signaling voltage they support, and have keying holes in both locations; that is, they will fit on the MVME6100's PMC site with the key in either location. For these PMC cards, it is recommended setting the MVME6100's keying pins to the 3.3V VIO signaling position, to allow the maximum PCIbus clock speed

Front/Rear Ethernet and Transition Module Options Header (J30)

A 40-pin planar header allows for selecting P2 options. Jumpers installed across Row A pins 3 10 and Row B pins 3-10 enable front Ethernet access. Jumpers installed across Row B pins 3-10 and Row C pins 3-10 enable P2 (rear) Gigabit Ethernet. Only when front Ethernet is enabled can the jumpers be installed across Row C and Row D on pins 1-10 to enable P2 (rear) PMC I/O. Note that all jumpers must be installed across the same two rows (all between Row A and Row B and/or Row C and Row D, or all between Row B and Row C).

SROM Configuration Switch (S3)

A part of the 8-position SMT switch, S3 enables/disables the MV64360 SROM initialization and all I2C EEPROM write protection. The SROM Init switch is OFF to disable the MV64360 device initialization via the I2C SROM. The switch is ON to enable this sequence.

The SROM WP switch is OFF to enable write protection on all I2C. The switch is ON to disable the I2C EEPROM write protection.

Setting the individual position to ON forces the corresponding signal to zero. If the board is installed in a 5-row backplane, the geographical address is defined by the backplane and positions 3-8 of S3 should be set to OFF. The default setting is OFF

  • Hirschmann MM20-M4M4T1T1SBH Industrial Ethernet module
  • IC752SPL011 GE control panel
  • GE ALSTOM IR139-1丨063022350丨80801419丨B0037299control card
  • ALSTOM UT150-1 control module
  • ALSTOM AL132丨AL132A Control Card
  • ABB 2CTB802342R0000 surge protector
  • ABB PM118-7BPM1118 MAGNET (NEO) .50LG
  • Tektronix TDP0500 high pressure differential probe
  • Carrier CEPL130403-02-R Microprocessor Board CEBD430403-11-RC 32GB500382EE
  • BENTLY 106M1079-01-Y Power Module Original
  • ABB system module DLM02 original DO610,DO620
  • 1394-SJT22-A servo driver Allen-Bradley servo equipment
  • MOTOROLA SGLF4136FA PLC control system
  • B&R ECPE84-1B Modulus Input Module Quality Service
  • Foxboro FBM213 communication module supply
  • S-093H 3BHB030478R0309 ABB high voltage frequency conversion rack
  • ABB S-123H 3BHB030479R0512 rack
  • ABB 3BHL000406P0103 VFW 30/265Processor unit
  • ALSTOM V4561983-0100 EPIC II ESP controller
  • MOOG G761-3004B5 H38JOGM5VPH Servovalve
  • 3500 BentlyNevada 3500/05-02-01-00-00-00 System rack
  • 3500/05-01-02-00-00-01 Bently Nevada 3500/05 System Rack
  • 3500/05-01-01-00-00-00 BentlyNevada System Rack
  • BentlyNevada 3500/05-02-01-01 System Rack
  • 3500/05-01-01-01-00-00 Bently Nevada 3500/05 System frame
  • BentlyNevada3500/95 System Integrated PC Display
  • 3500/93 Bently Nevada System Display
  • General electric IS215GBIAH1A auxiliary Genius bus interface module
  • MOOG D137-004-006 Servo valve controller
  • MOOG D137-004-005 Industrial controller
  • MOOG D137-004-004 Motion controller
  • D137-004-003 MOOG RDISP 22 operation panel
  • MOOG D138-002-003
  • MC 600 SERIES D138-002-002 MACHINE CONTROLLER MOOG
  • MOOG D138-002-001
  • MOOG B95914-001 Plate and fittings
  • D138-003-010 - Visualization HMI run time license (MACS HMI) for 10 machines
  • MOOG MACS HMI 1 - D138-003-001
  • MOOG D137-002-001 control module
  • MOOG QEBUS-CAN - D137-001-010
  • MOOG QAIO 16/4-V - D137-001-007
  • MOTOROLA MVME7100 - High-Speed Embedded Controller, VME
  • Motorola MVME2432 - VME Embedded Controller
  • Motorola СPU3640FLN3524A - Embedded Processor Module
  • MOTOROLA MVME187-24B01-W36908 - High-Performance
  • Motorola MVME162P-344 - VME Controller, 68040 Processor, Industrial Automation
  • Motorola FLN4234A - Embedded System Controller
  • Motorola MVME2604712 I/O-VME board
  • MOTOROLA MVME-51005E-0163-VME Embedded Controller
  • MOTOROLA MVME162PA-344SE - VME Controller
  • MOTOROLA MVME6100-0161 - High-Performance VME Board
  • MOTOROLA MVME55006E-0161R - Enhanced Performance VME Controller
  • MOTOROLA MVME162-523A - VME Controller
  • Motorola PCB MVME 2434 SBC PMC-HS/GE FANUC PMC661J card
  • Motorola MVME55006E-0163-VME processor board
  • MOTOROLA VME162PA344SE - Enhanced VME Controller
  • MOTOROLA MVME5500 - High-Performance VME Controller
  • MOTOROLA MVME147-023 - Legacy VME Board, Embedded Controller, Industrial Automation
  • MOTOROLA VME162PA-252SE - VME Board, Legacy System Controller, Industrial Automation
  • MOTOROLA MVME6100+5264- VME Board with Memory Expansionerformance Industrial Controller
  • MOTOROLA MVME2305-900 - VME Embedded Controller
  • Motorola MVME3100-1152-Enhanced VME Controller
  • Motorola MVME147-012-Traditional VME Board
  • Motorola MVME147-013-Traditional VME Board
  • MOTOROLA MVME-5101-0131-VME Embedded Controller
  • MOTOROLA MVME5101-0131 - VME Embedded Controller
  • MOTOROLA MVME167P-24SE - VME Controller
  • Motorola MVME7100-0171 - High-Speed Embedded Controller
  • MOTOROLA MVME3100 - High-Performance VME Controller
  • MOTOROLA MVME147-010 - Legacy VME Board,
  • MOTOROLA MVME55006E-0163R - Enhanced Performance VME Controller, Industrial Control Systems
  • MOTOROLA MVME5110-2261 - Enhanced VME Controller
  • MOTOROLA MVME2305-900 - VME Embedded Controller
  • MOTOROLA MVME5100-0163 High-Performance VME Embedded Controller
  • MOTOROLA MVME-147A0-60063-1 - Legacy VME Board, Industrial Automation Applications, Embedded Systems
  • MOTOROLA IPMC761-001 - PMC Carrier Board
  • MOTOROLA MVME6100-163 - Enhanced VME Controller
  • MOTOROLA MVME162-213 - Embedded Controller
  • MOTOROLA MVME162-022A - Embedded VME Board
  • MOTOROLA MVME61006E-0163R+P.N5264 - VME Processor Board
  • MOTOROLA MVME61006E-0161R+P.N5264 - Enhanced VME Processor Board, 1.3 GHz, Memory Card Supported
  • MOTOROLA MVME6100 (01-W3878F14B) - VME Embedded Controller
  • MOTOROLA APPLIED0100-01396 - Applied Computing Board
  • MOTOROLA MVME162PA-344 - VME Controller
  • MOTOROLA MVME2100 - Low-Cost Embedded VME Board
  • Motorola MVME5100-VME embedded controller, high-speed data processing.
  • MOTOROLA MVME162-202 - Embedded Controller, VME
  • MOTOROLA MVME7100-0173-2G - Embedded Controller
  • TRICONEX 2301 - Digital Output Module, High-Speed, Industrial Systems
  • TRICONEX 2351 Analog Input Module, High-Precision
  • TRICONEX 2401-Digital Input Module, Compact
  • TRICONEX 2101 Main Processor Module, Modular, High-Performance
  • TRICONEX 2381 - Digital Input Module, Compact Design, High-Precision
  • TRICONEX 9566-810 Power Supply Module, Modular
  • TRICONEX 8312 - Communication Module
  • TRICONEX FTA-544 Termination Assembly Modular
  • TRICONEX 3604E - TMR Digital Output Module, High-Precision
  • TRICONEX 9566-810F Power Supply Module, Compact
  • TRICONEX 3451 Analog Input Module, Compact
  • TRICONEX 3211S-analog input module
  • TRICONEX DI3301S2 Digital Input Module
  • TRICONEX 3481S2 Analog Output Module, Redundant
  • TRICONEX 3511 Main Processor Module, Modular
  • TRICONEX 3101 Main Processor Module
  • TRICONEX 8111 Communication Module
  • TRICONEX 4210 Analog Input Module
  • TRICONEX 4211 Analog Input Module
  • TRICONEX CIM3211S2 Communication Interface Module
  • TRICONEX MA2211-100S2 Communication Module, Redundant
  • TRICONEX MA2211-100 Communication Module, Compact
  • TRICONEX AO3481 Analog Output Module
  • TRICONEX 3501TN2 - Main Processor Module
  • TRICONEX 3623T Digital Output Module High-Precision
  • TRICONEX 3009 Main Processor Module, High-Speed
  • TRICONEX 3009X - Main Processor Module
  • TRICONEX 8310 Communication Module
  • TRICONEX 3008 - Main Processor Module, Modular, High-Speed
  • TRICONEX 3301-Digital Input Module
  • TRICONEX 3700A-Communication module, high performance
  • TRICONEX 3504E - Main Processor Module
  • TRICONEX 3503E Main Processor Module
  • TRICONEX 3481S Analog Output Module
  • TRICONEX 3351 Analog Input Module
  • TRICONEX 3401 Analog Input Module
  • TRICONEX RXM4201 Communication Module
  • TRICONEX RXM4200-3 - Communication Module
  • TRICONEX 3624 Digital Output Module
  • TRICONEX 3704E - Digital Input Module