KONG -Y
NameDescriptionContent
Location:
product
GE IS200IGDMH1B series Mark VI/VIe function module
❤ Add to collection

GE IS200IGDMH1B series Mark VI/VIe function module

GE-IS200IGDMH1B

U.S.$21159.00
U.S.$20606.00
U.S.$19575.70
U.S.$19163.58
Weight:0.780KG
Quantity:
(Inventory: 3)
Buy now
Add to cart
Description

GE-IS200IGDMH1B


GE IS200IGDMH1B series Mark VI/VIe function module

Describe

Part Number IS200IGDMH1B Manufacturer General Electric Country of Manufacture As Per GE Manufacturing Policy Series Mark VI/VIe Function Module Availability In StockIS200IGDMH1B is an IGBT gate driver board developed by GE. It is a part of EX2100 excitation system. 

The EX2100 is compatible with both static and rotating exciters such as brushless and Alterrex. The architecture communicates via Ethernet LAN (Unit Data Highway) with other GE equipment such as the GE Control System Toolbox (toolbox) for configuration, the turbine control, the LCI Static Starter, and the HMI (operator interface). The exciter receives power from either a power potential transformer connected to the generator terminals or an excitation transformer connected to an auxiliary bus. The primary feedbacks to the exciter are generator line current and stator output voltage, and the controlled output to the exciter field is dc voltage and current. IS200IGDMH1B Features It is a specialized board developed by GE with specific features and functions. Notably, this board does not have a traditional faceplate but is attached to a sub-strata made of a moldable material, which provides stability and support. The board is equipped with two vertical male two-pin connectors, labeled J1 and J2, as well as a single pin connector labeled J3. These connectors serve as connection points for various external components and wiring. In addition to the connectors, the board includes two plastic connectors and several terminal connections, allowing for secure and reliable connections within the system. An auxiliary board is soldered to the primary board, providing additional functionality and support. This auxiliary board carries several additional components, including capacitors, which contribute to the overall operation and performance of the system. 

The stacking of the auxiliary board with a heat sink component ensures effective heat dissipation, maintaining optimal operating temperatures and extending the lifespan of the board and its components. It is crucial to note that in the event of an IGBT (Insulated-Gate Bipolar Transistor) module failure, the board is often damaged as well and necessitates replacement. This highlights the interconnected nature of the board and its dependency on the IGBT module for proper functioning. When a failure occurs, it is necessary to replace the entire IGDM board to ensure the continued reliability and operation of the system. The board features a unique design with no traditional faceplate, being attached to a sub-strata for stability. It incorporates vertical male connectors, plastic connectors, and terminal connections to facilitate external connections. 

The auxiliary board soldered to the primary board enhances functionality and carries additional components such as capacitors. The presence of a heat sink component ensures efficient heat dissipation. It is important to replace the entire board in the event of an IGBT module failure to ensure proper system operation. Operator Interface Mark VI system features a PC-based HMI (operator interface) for comprehensive system data access. Provides real-time access to events, alarms, and time tags from a centralized location. IGBT Gate Driver Board Functions as an IGBT Gate Driver board. IGBTs are key components for power control in electronic systems. Components Houses over 10 integrated circuits, transformers, resistors, capacitors, diodes, and more. Incorporates various connectors, including J1, J2, and J3. Auxiliary board soldered onto the primary board, enhancing functionality. 

 Thermal Considerations Auxiliary board and heat sink component work together to manage heat. Reflects meticulous design for efficient thermal management. Software Overview The software utilized in the drive application program of the system is structured around functional software modules, acting as building blocks that collaborate to fulfill system requirements and ensure smooth operation. The EEPROM (Electrically Erasable Programmable Read-Only Memory) plays a significant role in storing block definitions and configuration parameters essential for the drive's operation. These parameters can be customized to suit specific system requirements and allow for efficient control and performance optimization. On the other hand, variables and dynamic data are stored in RAM (Random Access Memory), providing the flexibility to adapt to real-time changes in the system. 

Tune-up and diagnostic software components are integrated into the system, working transparently to the user. These components handle tasks such as optimizing drive performance and diagnosing any issues that may arise. By seamlessly integrating these software functionalities, the system can ensure optimal performance without burdening the user with complex manual adjustments or diagnostics. To facilitate operator control and interaction with the system, a door-mounted interface unit is provided. This interface unit offers a user-friendly menu-driven interface, allowing operators to navigate through various selections and perform control operations effortlessly. The menu-driven system enables operators to access and modify system settings, initiate specific functions, and monitor the drive's performance. The drive continuously monitors its performance, ensuring smooth operation and fault detection. The results of this monitoring process are displayed to the operator through animated meters, icons, and digital values on the Digital Display Interface (DDI). This real-time feedback provides operators with a clear understanding of the drive's performance and operational status, allowing for timely response and intervention when necessary. In addition to performance monitoring, the software also enables the operator to examine and reset any faults that may occur during operation. Through additional menus, operators can access detailed fault information, examine the root cause of the fault, and take appropriate corrective actions.

 The ability to reset faults through the software interface streamlines the troubleshooting process and helps to ensure uninterrupted operation of the system. System Hardware Overview The EX2100 hardware is housed in the following cabinets: Control Cabinet: Responsible for housing the control, communication, and input/output (I/O) boards. These boards are vital for the overall operation and control of the excitation system. The control board manages and regulates various functions, including monitoring system performance, executing control algorithms, and communicating with other system components. The communication board enables seamless communication between the excitation system and other control systems or interfaces. The I/O boards facilitate the interaction between the excitation system and external devices, allowing for the exchange of signals and data. Auxiliary Cabinet: Dedicated to field flashing and protection circuits, including de-excitation and shaft voltage suppression circuits. These circuits play crucial roles in ensuring safe and reliable operation of the excitation system. 

The field flashing circuit is responsible for providing the initial excitation current to the generator field winding during startup. Protection circuits, such as de-excitation and shaft voltage suppression, protect the generator and excitation system from potential damage due to abnormal conditions or voltage spikes. Power Conversion Cabinet: Houses the silicon-controlled rectifier (SCR) cells, cooling fans, DC contactors, and an AC disconnect. The SCR cells are key components responsible for converting AC power to controlled DC power. The cooling fans are integrated into the cabinet to dissipate heat generated during operation, ensuring optimal temperature levels and preventing overheating. 

The DC contactors facilitate the switching and control of the DC power output, allowing for proper regulation and distribution. The AC disconnect provides a means to safely disconnect the AC power supply to the system when necessary for maintenance or emergency purposes. De-Excitation Therefore the SCR conducts and dissipates the stored energy of the generator field through the field discharge device. Feedback from either conduction sensor verifies that the discharge circuit has operated successfully. If both independent firing control circuits fail to fire, the SCR is fired by the anode firing circuit when the anode to cathode voltage has exceeded the selected level. 

For large exciters, it is possible to connect multiple de-excitation modules together with one board configured to be the Master and the other boards configured to be Slaves. As a result, the SCR conducts and dissipates the generator field's stored energy via the field discharge device. Feedback from either conduction sensor confirms that the discharge circuit worked properly. If both independent firing control circuits fail to fire, the anode firing circuit fires the SCR when the anode to cathode voltage exceeds the selected level. Multiple de-excitation modules can be connected together for large exciters, with one board configured as the Master and the other boards configured as Slaves. Control Module The control module in the EX2100 system is designed as a VME-style rack, featuring multiple boards that are cable connected to the I/O terminal boards. This rack serves as the backbone of the control system, housing the essential components required for managing the motor and its associated processes. The control module's architecture provides a flexible and modular setup, allowing for efficient control and communication between various elements of the system. The VME-style rack is divided into three distinct and independently powered sections, each dedicated to a specific controller within the system. These controllers are referred to as M1, M2, and C controllers:IGBT GATE DRIVER

Related models

0880001-01

104X905BA603

12A0-0103-A3

12HFA51A42H

12HGA11J52

269 PLUS-D/O-100P-125V

369-A200

369B1860G0026

369B1860G0030

369-C100

369-C101

369-HI-0-0-0-0

369-HI-0-M-F-E-0

369-HI-R-M-0-0-0-E

369-HI-R-M-0-E-0

369-HI-R-M-0-P-0-E

application area

Industries such as petroleum, coal, metal ore, nonmetal ore and wood;

Industries of basic materials, power and fuel.

Metal smelting and processing, coking and coke, chemistry, chemical raw materials, cement, wood-based panels and power, petroleum and coal processing industries;

Machinery and equipment manufacturing industry, metal structure, cement products, chemical fertilizer and pesticide industry.

Wind power generation, thermal power generation, hydropower generation, nuclear power generation and other energy sources; For example, thermal power in China is mainly distributed in the northern coal-producing areas of China, mainly using coal. Hydropower is mainly distributed in the source area of south China, which is rich in hydropower. The distribution of nuclear power is not very typical.

Power transmission, including AC power transmission and DC power transmission: For example, the largest power transmission project in China is the West-to-East Power Transmission Project.

Substation; Power distribution; Electricity, electrical machinery and equipment manufacturing.

These are the application fields of our products.

About Xiamen kongjiang automation technology co., ltd:

Xiamen kongjiang automation technology co., ltd is a technology-based entity company established on may 11th, 2017, located in Xiamen, Fujian province. The company is mainly engaged in the sales of imported industrial control parts, electrical engineering design, installation, programming, debugging, construction and other businesses. The company has an experienced and well-trained technical team, which is committed to providing customers with services such as electrical automation system development, automatic upgrading and transformation of the original production line, energy-


  • alstom AMS42/84 5B Amplifier SystemAmplifier Technology at its Best.
  • GE VMIVME-5576 Fiber-Optic Reflective Memory with Interrupts
  • GE Multilin 750/760 - Legacy Feeder Protection System
  • GE Fanuc Automation VMICPCI-7806 Specifications
  • GE VMIVME-7807 VME-7807RC* Intel® Pentium® M-Based VME SBC
  • GE Fanuc Automation VMIVME-7750 Specifications
  • FOXBORO Compact FBM240. Redundant with Readback, Discrete
  • FOXBORO FBM208/b, Redundant with Readback, 0 to 20 mA I/O Module
  • FOXBORO FBM201e Analog Input (0 to 20 mA) Interface Modules
  • Foxboro DCS FBM206 Pulse Input Module
  • FOXBORO FBM216 HART® Communication Redundant Input Interface Module
  • FOXBORO Z-Module Control Processor 270 (ZCP270)
  • Foxboro DCS Compact FBM241/c/d, Redundant, Discrete I/O Modules
  • Foxboro FBM223 PROFIBUS-DP™ Communication Interface Module
  • Foxboro DCS FBM204. 0 to 20 mAI/OModule
  • Foxboro FBM239, Discrete 16DI/16DO Module
  • Foxboro FBM202 Thermocouple/mV Input Module
  • Foxboro E69F Current-to-Pneumatic Signal Converter
  • EMERSON M-series Intrinsically Safe I/O
  • Configuration for AMS 6500 Protection Monitors
  • EMERSON DeltaV™ M-series Traditional I/O
  • EMERSON DeltaV™ SQ Controller
  • AEROTECH Ndrive MP Hardware Manual
  • AEROTECH Ndrive HPe 10/20/30
  • AEROTECH Ndrive CP Hardware Manual
  • AEROTECH Ndrive Linear Series Digital Servo Amplifiers – Linear
  • AEROTECH Ndrive HP 10/20/30 P/N: EDU170
  • AEROTECH EDU176_Ndrive_HL
  • ADVANCEDMOTION CONTROLS Analog Servo Drive 120A10
  • GE JPAX-H
  • GE JPAX family
  • GE Industry Leading Experience
  • GE Ether-1000 Unit
  • GE Cyber Secured Service Unit
  • GE Lentronics E1MXe Multiplexer
  • GE TTMX Teleprotection Terminal
  • GE Lentronics T1 Multiplexer
  • GE Lentronics JungleMUX SONET Multiplexer
  • GE Lentronics E1MX Multiplexer
  • GE Lentronics TN1Ue SDH Multiplexer
  • GE Lentronics TN1U SDH Multiplexer
  • GE Gridcom DXC Family Access and Transmission Multiplexer
  • GE Advanced Network Management
  • GE Lentronics VistaNET Network Management System (NMS)
  • ABB System Controller Connect
  • Ethernet Module EI 803F ABB
  • ABB Ethernet Modules EI 802F
  • ABB Ethernet Modules EI 801F
  • ABB Power Supply SD 802F / SD 812F
  • ABB Power Supply SA 801F / SA 811F
  • ABB Basic Unit PM 802F /PM 803F
  • Control product - Soft starter PST/PSTB (Intelligent Type) ABB
  • ABB CP450 Installation and Operation Manual
  • ABB ompact 800 5.1 Product Catalog
  • ABB Panel 800 version 6
  • ABB Panel 800 Version 6- Panel Builder Version 6.0-1
  • ABB Control Panels CP405 Control Panels CP408
  • ABB PowerUP for medium voltage drives
  • GE MiCOM P40U Connect MiCOM P40 IEDs to PCs with USB ports
  • Reason RT431 GPS Precision-Time Clock GE
  • GE Reason RT430 GNSS Precision-Time Clocks
  • GE Reason H49 PRP/HSR Redbox Switch
  • GE Reason S20 Managed Ethernet Switches
  • GE Gridcom DIP.net
  • Central Control Station at Jaenschwalde mineLausitzer Braunkohle AG, Germany 2000
  • ABB Ability™ System 800xA Advant® Master S400 I/O to S800 I/O Evolution
  • ABB with Advant Controller 400 series
  • Advant™Automation with MOD 300™ Software
  • Bently 2300/20 and 2300/25 2300 Vibration Monitors
  • ABB NGC8206 Natural Gas Chromatograph Dual Unit
  • MOTOROLA MVME2400 TM VME Processor Modules
  • 5320 Series Foxboro DCS Control Network Ethernet Equipment
  • ExtremeSwitching™ 5420 Series
  • WOODWARD EGCP-3 Engine Generator Control Package LS (Load Sharing)
  • 5520 Series Universal Edge/Aggregation-Switch Platform
  • X440-G2 Series
  • EMERSON FloBoss™ S600 Flow Manager Specification Sheet
  • KONGSBERG RAIV400 Remote Analogue Input, Voltage
  • RMP420-Remote Multipurpose Input/Output Kongsberg
  • 610 serie ABB Feeder Protection REF610 Product Guide
  • Triconex 3351S2 Controller Features
  • HBRF Megamax – Emax2 Air Circuit Breaker ABB
  • ABB MEASUREMENT & ANALYTICS | DATA SHEET LS4000 Diode laser analyzer
  • Pressductor Pillowblock Load Cells Vertical Measuring PFCL 201 User manual
  • PARKER BFR5K Series
  • AC 900F controller ABB
  • Uniop ePAD05 and ePAD06 Technical description
  • Hitachi ABB Communication Unit 560CMR02
  • MOTOROLA MVME5500 Series VME Single-Board Computer
  • ABB Symphony Plus SD Series HPC800 controller
  • ABB AC800M Controller Hardware System
  • ABB AC800M PROFIBUS DP Installation System
  • ABB Freelance 800F AC800F Control systems
  • ABB Compact control system replaces PLC AC700F
  • abb Triguard SC300E 3BNP004720R101 TMR Safety Products
  • ABB Distributed busbar protection REB500
  • ABB Advant Controller 400 series
  • ABB MEASUREMENT & ANALYTICS | PRODUCT GUIDE
  • PACIFIC SCIENTIFIC PC800 PC832 PC830 Series Digital Brushless Servo Drive
  • PSS41S-3FDCTSAA Triconex DCS System Access Application Driver for Field Device Controller 280
  • Alstom controller of ICP232 029.359325
  • DEIF DU-2/MKIII Paralleling And Protection Unit General information
  • ABB 3ADT220134R0001 SDCS-COM-81 board 10MBd
  • ABB 3BHB006338R0002 UNS 0881a-P,V2:GDI PCB assembled *PB
  • ABB GRID BREAKER UNIT GBU72 3BHE055094R0002 / 3BHE031197R0001 / 3BHB030310R0001
  • ABB PCS6000 PRODUCT FAMLIY
  • ALSTOM SPU232.2 controller UNIT 029.366 817 029366817 SPU2322
  • ABB AO2000-LS25 Operator’s Manual 41/24-109 EN Rev. 3
  • Alstom EPSD-0603 series Circuit board redundancy architecture
  • ABB GJR2390200R1411 83SR04R1411 Control Module Universal
  • GE Digital Energy Hydran 201Ti Mark IV Essential DGA monitoring
  • Bender ISOMETER®IRDH275 IRDH275B
  • ABB 3BSE017235R1 PXAH 401 Operator Unit
  • HIMax-TECHNICALFACTS
  • Power supply CP-E 24/1.25 ABB
  • ABB NSIN0070-5 (IP23) 3ABD00024914
  • ABB 1VCR000993G0002 PCB card
  • ABB 2CSG524000R2021 TMD-T4/96 Temperature control unit
  • 3BHE014135R0011 UAD149A0011 ABB AC800PEC series
  • Alstom CT94360/01 signal regulator
  • MISP2-2W-T00-1000 GE Measurement & Control Solutions
  • DEIF AGC150 independent generator controller
  • DEIF AGC-4 10102264.10 Advanced generator set controller
  • ABB Plantguard Communications P8151B P8110B
  • ABB Plantguard series P8403 Digital input module
  • ABB 3BHE041343R0102 PCD530A102 Comm. Contr. & Meas. (CCM)
  • ABB P8431 TMR analog input module
  • ABB P129740-002 SIO Assembly,Smart Weight,Interface,Pre-